Skip to Content.
Sympa Menu

cado-nfs - Re: [Cado-nfs-discuss] how to configure parameters

Subject: Discussion related to cado-nfs

List archive

Re: [Cado-nfs-discuss] how to configure parameters


Chronological Thread 
  • From: meng <qsmeng@126.com>
  • To: "paul zimmermann" <Paul.Zimmermann@inria.fr>
  • Cc: cado-nfs-discuss@lists.gforge.inria.fr
  • Subject: Re: [Cado-nfs-discuss] how to configure parameters
  • Date: Fri, 1 Apr 2016 19:56:18 +0800 (CST)
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=qsmeng@126.com; spf=Pass smtp.mailfrom=qsmeng@126.com; spf=None smtp.helo=postmaster@m15-34.126.com
  • Ironport-phdr: 9a23:O34Cth/4u8W41v9uRHKM819IXTAuvvDOBiVQ1KB91OgcTK2v8tzYMVDF4r011RmSDdWdsKgP17KempujcFJDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wEZcKflZk+3amLRodQ56mNBXsq3G/pQQfBg/4fVIsYL+lSsiJ1Y/rj6ibwN76XUZhvHKFe7R8LRG7/036l/I9ps9cEJs30QbDuXBSeu5blitCLFOXmAvgtI/rpMYwuwwZgf8q9tZBXKPmZOx4COUAVHV1e1wysYfzvATHBRmO434RSGAflBwCS1z95Qz+GKXwty73rO903i+yPMvsTLlyVy70vIlxTxq9jSoBOHZxpHjMj8F2g4oC+kznrBt6ld2HKLqJPeZzK/uONegRQnBMC4MID3RM
  • List-archive: <http://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/>
  • List-id: A discussion list for Cado-NFS <cado-nfs-discuss.lists.gforge.inria.fr>

Dear Paul,






At 2016-03-31 23:12:11, "paul zimmermann" <Paul.Zimmermann@inria.fr> wrote: > Dear Meng, > >> Date: Thu, 31 Mar 2016 22:13:53 +0800 (CST) >> From: meng <qsmeng@126.com> >> >> Dear Paul, >> In cado-nfs2.2,you used method from your paper "better polynomial", where for different skewness, there exist many plolynomials. I obtain new polynomials by one polynomial subtracting another one and then select the one with smaller leading coefficient. usually these new polynomials will have smaller lognorm. >> I just use version 2.2 and the command is cado.py N workdire >> Best regards, >> Meng > >thus I conclude the better polynomial you got for RSA-120 was obtained with a >modified version of cado-nfs. Just curious, what is this polynomial?
 > >Paul

the polynomial goes like this:
n: 227010481295437363334259960947493668895875336466084780038173258247009162675779735389791151574049166747880487470296548479
skew: 34768.0
c0: 8300254538725833888531445545
c1: 665466551407346306968179
c2: 9320605370626500511
c3: 27435101433965
c4: -28964342892
c5: 19260
Y0: 2006365639456767948836
Y1: 2447097403723699729
# MurphyE (Bf=3.41e+06,Bg=1.57e+06,area=2.86e+13) = 9.43e-10
# lognorm 37.82
  In fact, I am also curious about the form it has before the root optimization.  it is the 557 polynomial after size optimization, but is the best after root optimization.

 Regards,
Meng


 




Archive powered by MHonArc 2.6.19+.

Top of Page