Subject: Discussion related to cado-nfs
List archive
Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€
Chronological Thread
- From: Paul Leyland <paul.leyland@gmail.com>
- To: cado-nfs@inria.fr
- Subject: Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€
- Date: Mon, 11 Mar 2024 10:23:21 +0000
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=paul.leyland@gmail.com; spf=Pass smtp.mailfrom=paul.leyland@gmail.com; spf=None smtp.helo=postmaster@mail-ej1-f49.google.com
- Ironport-data: A9a23:EkRumK53b4ET4zFE+O8npwxRtKDDchMFZxGqfqrLsTDasY5as4F+v mcdXDuAO67eMTehKdx3bIzj9E0A75ODnNFiQFRq+ShhZn8b8sCt6faxfh6hZXvKRiHgZBs6t JtGMoGowOQcFCK0SsKFa+C5xZVE/fjUAOC6UoYoAwgpLSd8UiAtlBl/rOAwh49skLCRDhiE0 T/Ii5S31GSNhXgsbQr414rZ8Ekz5K+r4WtB1rADTakjUGH2xyF94K03fvnZw0vQGuF8AuO8T uDf+7C1lkuxE8AFV7tJOp6iGqE7aua60Tqm0hK6aID+6vR2nRHe545gXBYqhei7vB3S9zx54 I0lWZVd0m7FNIWU8AgWe0Ew/y2TocSqUVIISJSymZX78qHIT5fj6/o1IF0GZqkbwKFcBW9L+ dopLHcrcCnW0opawJrjIgVtrsEqLc2uMYFG/388nHfWCvEpRZ2FSKLPjTNa9G1o14YeQLCEP ppfNWsHgBfoO3WjPn8PAY862uOll332dTFwp1ecpK5x6G/WpOB0+Oi0b4WEJYTVLSlTtkSSi j3l8V6iOyMTD9Cx8BOBzXDxpNaayEsXX6pJSeTgqa806LGJ/UQYAREREF21utGim0umUpReL VYV82wgt8APGFeDS9D8W1i1oifBsEJNHdVXFOI+5UeGza+8Dxul6nYsQWVtdOx9kMwMAhcu2 FqFueLtQhpxiejAIZ6CzYu8oTS3MCkTCGYNYy4YUAcIi+UPRqlj0Hojqf4zQMaIYs3JJN3m/ 9ydQMEDa1g7iMcK0+C2/wmCjW794JfOSQEx60PcWWfNAuJFiGyNNtDABbvztKkowGOlor+p4 iFsdy+2srxmMH11vHbRKNjh5Znwjxp/DBXSgER0A74q/Cm39niocOh4uW4nfB84b5paJGayO yc/XD+9ArcDYhNGiocnM+qM5zgClPOI+SnND6yKNIAfPcYZmPGvp3kxPxD4M5/RfLgEyvxmY cjKL65A/F4VDqNoyDf+RuEWl9cWKtMWlAvuqWTA503/i9K2PSbLIZ9caQfmRr5jsMus/l6Om /4BbJvi9vmqeLehCsUh2dVDcw5iwLlSLcyelvG7gcbYc1s+Rz94UqKBqV7jEqQ895loei7z1 inVcidlJJDX3xUr8C3TMio9OoD8F41yt2w6NiEKNFOlkSprK4W24atVM9N9cbA7/aYxhbR5X tsUSfWmW/5vczXg/yhCTJ/fqIc5Sg+nqzjTNAWYYR8+XaVaeSr3xvHecDHSqRY+VhiMiZNmo pmL9B/qfp4YdgEzUOfUcK2Oyn2yj1g8mcVzfU3CHfdLcm6x8oIwcy3Vpd00KvEqNh/s6Ga71 QGXIBFAvsjLgdY/3+fojJC+jbWCMrVBDGsDOELE/5OaCDL8wlOz5aNhDMOZYiH7Vk7v3aepO NVu0PD3NcMYkGZws4ZTF6hhyYQ87YDNo4B24xtFHnLZSUaCEZJlf2e72PdQup13xrN2vRW8X mSN8IJ4PZSLIMbUL04DFjE6b+is1eAmpReK1K4beH7F3S5Q+KaLdW5wPBPW0SxUE+ZTAbMfm OwkvJYb1hy7hh8UKe25tyFz9VmXD3k+Qq4i54A7Aojqt1IR8Wt8Q6fgUw343JLeTO93EBgOA iSVj6/8lbhj1hL8U34sJ0Psg8tZp7oz4S5v8nFTBm6nuNT/gt0P4CZw6hUyFwRc8QVG2bl8O 09tLExEGp+N9DZJ2ulGU3ydJAVaIBi/5EbK6kAokVfBRBKCTV39L2waOMeM8nsG8mlaQCNpw bGAxEvhUhfoZMvU3BZufWJAtNrYUoVX2iDZvcKoDeCpPsMfWiX0pL2qaU4jiQrVMeloiGLp/ eBVrftNM4vlPisukogHIoi915FLbTubJWZHEMpTzIlQEU7yIDiNiCWzcWavccZwJtvPw0+yK +pqAultDx2e9iK/ngo3NJ42AY1fvaAWvYIZW7bRO2Q5naOVrWNpvLLu5yHOvjIXbOs0o/ktC LH6VmykKXORt0t2imWWjchjO0iEW/cmSjD4/tiI9LQuK8pensBqKVo/w5mljUWzaQFHxS+Zj CnHRq3RztFh97hSopvRIv1DKTmZedLXf8aUwT+3qOVLPI/uM9+RlgY7qWvHHgVxPJkNautzj pCyjsfS5xrAmpo1TlKDyoezTblNwcCUQuBsE9nWKUNClnCoQ/7c4Bok+kG5J6dWkdhb2NKVe gugZOa0dv8XQ9141lQPTwR/SjEzU7/WaIXkrgOD98W8MAAXi1H7HYn25E3XYnF+XQ5WHZ/HU yvfmeukv/Jcp6RyXC40PelsWcJEEQWySJkdVoPDsBeDBTOVmXKEgLzpkCQg5RztCnWpFMXb4 4rPdiPhdSad6b3589VEj7Nc5hEnLm5xoe0VTHIv/9RbjzObDmlfCc8/NZ4AKI9fkw2s9ZXeS QzOUlAfCnTGbWwZSSn/3dXtYF7OTKhGcNL0PScg8E6oej+7TtHISqdo8iB7pWx6YH3/xeWgM ssT4WD0IgP3+JxyWOIP/bautI+LHB8BKq4goigRUvAeAiryxZ0P3X1lWQdPDGnJT5CLm0LMK mw4A2tDRSlXjKI3/dlIIxZo9NMx5VsDDAnEqQ+Axd/ev8OQy+goJDjXJbToyrNaBCgVDOdme J40LldhJ0iZ33USve0ivNdBbWqYzx6UNpDSEZIPjjH+U019BqrL8i/CcecyoBkexTNi
- Ironport-hdrordr: A9a23:cdD+s6uDm4JcMXoXZ1OXozqY7skDVdV00zEX/kB9WHVpm7+j5q aTdZMgpGPJYVcqKQwdcLW7UpVoLkmsl6KdjbNhRotKGTOWwldAT7sSiLcKoQeQeBEWn9Q1vc wBT0E9MqyJMbETt6fHCWKDYrEdKbe8gdmVbKvlvhNQpMJRB52ILT0VNu9WKCJLrcB9a6YEKA ==
- Ironport-phdr: A9a23:8EJCrxIab/zdOvVEmdmcuA1vWUAX0o4c3iYr45Yqw4hDbr6kt8y7e hCFtLMy1RSQBs2bs6sC17CG9fi4GCQp2tWojjMrSN92a1c9k8IYnggtUoauKHbQC7rUVRE8B 9lIT1R//nu2YgB/Ecf6YEDO8DXptWZBUhrwOhBoKevrB4Xck9q41/yo+53Ufg5EmCexbal9I RmoqQjdrMsbjZZtJqosxBbCv39Ed/hLyW9yKl+fgRXx6t2s8JJ/9ihbpu4s+dNHXajmcKs0S qBVAi4hP24p+sPgqAPNTRGI5nsSU2UWlgRHDg3Y5xzkXZn/rzX3uPNl1CaVIcP5Q7Y0WS+/7 6hwUx/nlD0HNz8i/27JjMF7kb9Wrwigpxx7xI7UfZ2VOf9jda7TYd8WWWxMVdtXWidcAI2zc pEPAvICM+hWoIbyqUYAowWwBQesBuzg1jBGi2Tq3aA5yektDR3K0BIiEt8IrX/arM/1NKAXU e2t1qfH1yjDb/dL0jn79ofJchQhruuKXb1tbMHczlEvGBnYjlWUs4DlOy2a1+QJs2eB6epvS Pmii2Eiqw5rozivwt0ghZXOhoIQ013J8zhyz4kpK9OiUkF7fcKkH4VKtyGcL4Z7TcEvTmJ1t Cs7xbAKpZ61cTQUxJkoxxDSZeGLfouH7x/+WuucPyp1iW97dbyxhxi/9VSsx/H4W8Wo0FtEo TRJn9/RvX4D0BzT79KISvp7/kq53DaAyRrT6vpaLkAyk6rUNZAhwrkqlpoOtETPBCj2mF/5j KOOckUk/fKo6+X9bbn8qJ+cLYl5gRz9PKQ2gsGzH/g0PwwUU2WY+emwzqPv8VD6TblQgfA7l rHVvI3ZKMkbvKK1HgtY3ps55xqhADqr084UkWQaIF9Bfh+MkpbkO1XTIPDjEfewnU6snipqx /HHILLsGonBI37em7n7Z7l98VRTyA8rwNBf+Z1UDrYBLer2WkDrtdzYCgY1PBK2w+r6Edl92 IwTVGaVDq+WN6PStlCI5uYxLOWWeIAVvzP9J+Ak5/7ok3A5hUcQcbe10ZYTcny1HfRrL1+Hb XbxgdoNC2gHsw4mQOzvklKCUDpTZ3ioX6I74zE2EJqmAp3eRoCpmrCB2Dm0H51SZm9cDFCDD Gzld4qBW/gWaSKSJtVtnSADVbikU4Mh0wqhuxfgy7V7NurU5jEYtZX72dRo/+HTjw099SRoD 8SB1GGAV317kXkVSD8xxax/p0J9ykyY3Khjg/1YEMRT6OlTXgc7M57c1e16BMroVgLPZNfaA GqhF96vDTZ0SNwq694IeUd0Xdu43T7Z2C//O7YIk/SvCY0w+6TQlyzpLtt5jXLLxa0oiVUOT c5GNGngjal6oVuAT7XVmlmUwv75PZ8X2zTAoT/rJQumuUhZVFU1SqDZRTUEYVOQq93l50TER rvoCLI9MwIHx9TRYrBSZIjPilNLDOzmJMyYe3i4zn+5GBLOwr6daIPsd00S2SzcDA4PlAVAt W2eO10GDzy663nbECQoEFvuZ0329uwrsHqmSgkwwhCOZktt/7Ww8x8Rw/ebTqBbxaoK7QEmr Tg8B1Ohx5TWBt6H8hJmZ7lZaMgh7U1v0GvYs0lwPMXlIfwzwFEZdAtzsgXl0BAf5pxot88so TtqyQNzLfndy1Zdb3aD2oi2PLTLK2709RTpaqjM21iY3szEsqEIoO81rVnupmTLXgIr7mln3 t9J0nCd+oSCDQwcVoj0W1o28B4yrq/TYy007YfZnXN2Nqz8vjjH0tMvTOwrr3ToN89WLafCE ALjF8QcC+ChLeUrnx6iaRdFdOFe+agoPt+3IuOc0f3OXq4olzangGJbpYFlhxjUpmwsF6iSh sZDn6DLu2nPHy3xh1qgrM3tzIVNZDVJW3G61TChH4lJIKt7YYcMD26qZcyx3NR3wZD3CBs6v BauAU0L3MixdF+cdVv4iEdI3FkT53iqiC+xyTBcnDQgr67Z1yvLibeHFlJPKitQSW9ugE25a 5C9ktRcWEW5awEvmDOq4E/7w+5Qo6E1fAyxCQ9YOiPxKW9lSK65sLGPNtVO5J0fuiJSSO2gY FqeR9YRujMi2jj4VytbzTE/LHSxv4nh2gd9kCSbJWpyq3zQfYdxww3e7ZrSX6wZ0j0DTSh+w T7ZYzr0d8Gg4NHSk5rStum4W0quU5RSdW/gyobIuCag5GJsCAGyhLjpwoyhQVV8i3arkYU7H SzT5A7xeIzqy7i3PYcFNgFzCVnw5tA7UoByn40shY0BjH0Th5Gb530Cwi/4NdRW3767bWJYH 2ZahY6IplK8iAs/fyHspcqxTHiWz8p/asPvZ2oX3nl49MVWEOKP66QCmyJpo12+pAaXYP5nn z5bx+F9jRxSy+wPpgcpyT2QR74IGkwNdzTlihDO692vqKxRaE6gdLGx0Ax1mtXrX9Tg6klMH W30fJsvB3o69sxiNBTI3Wz344foUNbVZNMX8BaTll2T6oodYIJ0nf0Miy19PGv7tnBw0O83g ytl2pSitZSGIWFgr+qpRwRVPTrva4YP6yng2OxAy92O0dnlTfADUn0bGYHlRvWyHHcOuOT7Y kyQRSYkpC7TGKKDT1TCrh439zSVT8/tbzbNeDEY1YkwGkXbfhcExllKBHNi2cdoc2LijM35L BUnuHZIvgS+8l0UjbgwfxjnDjWB+kHyNmZyGMDZdF0MtklD/xuHbpbYt741RnACuMXm9VzoS CTTZhwUXz5VHBXeWha7eOHpvIeI8vDEVLPmf72XPurI+aoGEK3RjZO3jtk/oG3Kb5TTeCEkV 7pihC8hFTh4A5iLwW1eDXxK0XuXP4jD407jsixv8pLlqaqtBVKpvNrVTeMVaIQn+gjq0/3aa ajK33c/cmwejtRVlBqqgPAJ1VoWwUmCbhGLFrIN/W7IRaPUwepMCgIDLjh0LI1O5r492Q9EP YjajMn03/h2lKx9DVANTlHnlsyzAK5Ca2igKFPKAlqKP7WaNHXKxc/we6a1VbxXiq1dqRSxv T+RF0KrMC6EknHlUBWmMOcEiy/+XlQWoIambhNkEnTuVvrjYxy/ddJ11Hg4nexyiXTNOmoRd zN7dgIFr7Gd6z9ZnuQqG2FF6SkAT6HMkCKY4u/Eb5cO5KEzU2IkyqQAuSR8l+oGiUMMDOZ4k ybTsNN09lSvk+3UjyFiTAILsTFTwoSCoURlP6zdsJhGQ3fNuhwXvgDyQ1wHocVoDtr3tuVe0 N/KwejrISpGtdbZ7M8VAcT8J8eOMX5nOh3sUm2xbkNNXXuwOGfTilYI2umV7WGQp4Mmp4LEn ZMPTvpWVgVwGK9LTEtiG9MGLdF8WTZuwtv5xIYYoHG5qhfWXsBTuJvKA+mTDfvYIzGclbBYZ hEMzNsQzKwWP4z/nkFgMxx0wNWMFE3XUtRA5CZma11syK2i2Hd7R2w3nUnib1H0iJf2PfGxl x8yzAB5ZLZ1nAo=
- Ironport-sdr: 65eedb9c_l5Kr05s8Ba4hX7/tqraQqYovfiE11q9sfiyauC+PlBusHkK IMkErG2AYvQYyMPhD/oaTXH2VnTtt/ZbEPEG3AQ==
See also the discussion at https://mersenneforum.org/showthread.php?t=29410 for further information about the background for this request and suggestions as to how it may be addressed.
Paul
On 11/03/2024 06:53, Pierrick Gaudry wrote:
Hi,
ECM is an almost perfectly parallelizable factoring algorithm.
Its complexity is in L(1/2) instead of L(1/3) for GNFS, and in practice
it can extract prime factors of only a few dozen of digits. For 115 digits
RSA numbers, it is certainly not the fastest method.
You can have a look at GMP-ECM. Give it a try with appropriate parameters
(see https://members.loria.fr/PZimmermann/records/ecm/params.html), and
you will get an estimate of the cost.
Note the total time of ECM before finding a factor is very probabilistic.
Regards,
Pierrick
On Mon, Mar 11, 2024 at 12:34:29AM +0100, Laël Cellier wrote:
As everybody here knows, the ɢɴꜰꜱ is the most efficient algorithm for
factoring numbers formed of roughly equal in length composites.
But it’s linear Algebra/sequential parts means (If I’m not wrong), that it
requires at least 9 minutes on current hardware to factor semi‑primes formed
of composites of roughly equal length (in the case of 382 bits semi‑primes
the Linear part takes 6 to 10 minutes).
Are there less efficient algorithms but by being more parallelizable, that
would allow to solve batch of such semi‑primes faster using more resources ?
(though not prohibitively costly). If yes, it would be good for ᴄᴀᴅᴏ to
support them…
The aim is part of a small competition where the reward goes to the first
who answers. The fact the record is still 9 minutes for 382 bits semi‑prime
seems to tell there’s no solution : but there’s currently only 3
participants in the race.
Sincerely,
- [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€, Laël Cellier, 03/11/2024
- Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€, Pierrick Gaudry, 03/11/2024
- Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€, Paul Leyland, 03/11/2024
- Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€, Laël Cellier, 03/11/2024
- Re: [cado-nfs] Factoring 350 to 400 bits long rsa number… But in less than 5 to 7 minutes and less than 100€, Pierrick Gaudry, 03/11/2024
Archive powered by MHonArc 2.6.19+.