Subject: Discussion related to cado-nfs
List archive
- From: T iffany <bcjzyyyhtw@outlook.com>
- To: "cado-nfs@inria.fr" <cado-nfs@inria.fr>
- Subject: [cado-nfs] solving DLP in GF(p) with ell^2 divides p-1 using CADO-NFS
- Date: Fri, 18 Apr 2025 04:54:31 +0000
- Accept-language: zh-CN, en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector10001; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=Zwzjs1clAR7cG4uS7JqbJy5v5JfTqYYuYFkPxlwtwro=; b=PJJIpjfFCB1Qgy80L6fmfEy1NjDQeS5IxMgJ4ScnJUgo+0JYc1Q8KiDhr4nOd/iXcBFBLRTXa/wYYqf2/eY/6FjM463K4aNPtVwfsJJF3k9QGvtTfZhIW36QRNdX9lqDgugt+gIoBsatPVD4xx3HWwy+hw4RVAF908b4DjOPSs8cwWoekQEt/qzDjVIcQe9Dc0bp0LLLZXfbMAa8bVNDn5HuQbWjgvcPtqofwI4SyMhY4foTRT/9vnvBlJ4AfA4WUmu0armIMy0sEuazSGIOTUHgRoI1FMzzH/gOP27/YY4phWjZd2HK8aFYe5XK1523d+hYyQU+x33VnyX6wQ3Lhg==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector10001; d=microsoft.com; cv=none; b=bTNcMjkWV1bqqZKnYMVD+OmO34adE5ZsmqAupLsUGmKp4IuHUy7yTmhyqSe8WWx97LkKl4yjZwrjQPVrn9A/NSvci6ooXPOHMq42tT/3dKrB1itgnR19OITxgVtkTBiWWdm8q7vt67lklItcKjOXoCHAyXjPYKTl3ya1jEpznuNVVqC898m8yMpF0MRV5YMfVybAV6saOrM4ihY3RvcHr+GX/uaPdOqKA9UiEcTBFr9dkFHpSjo9m/zkeN5miWrhaKmyxYh/sO0/pCFa2rHXLYeKX8E984C6QYxl8kFrtjeWk+zxXSN3Imz8/uHwPUYNJANueH3Xn9+d0h/Qp5DZiw==
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None smtp.pra=bcjzyyyhtw@outlook.com; spf=Pass smtp.mailfrom=bcjzyyyhtw@outlook.com; spf=None smtp.helo=postmaster@TYDPR03CU002.outbound.protection.outlook.com
- Ironport-data: A9a23:GEkrpax+lQqB8YxxSlt6t+cNzSrEfRIJ4+MujC+fZmUNrF6WrkUPx mAbDT+FOPreamugfIp1bom280MBsJSBnNJiSwE6q1hgHilAwSbnLYTAfx2oZ0t+DeWaERk5t 51GAjXkBJppJpMJjk71atANlVEliefSAOCU5NfsYkhZXRVjRDoqlSVtkus4hp8AqdWiCmthg /uryyHkEAHjgmMc3l48sfrZ9Usz5aSq5Fv0g3RnDRx1lA+G/5UqJMlHTU2BByOQapVZGOe8W 9HCwNmRlo8O10pF5nuNy94XQ2VSKlLgFVDmZkl+B8BOtiN/Shkaic7XAhazhXB/0F1ll/gpo DlEWAfZpQ0BZsUgk8xFO/VU/r0X0QSrN9YrLFDm2fF/wXEqfFPm5cdWAn8vPbEYxelnHn9cz vhACiAkO0Xra+KemNpXS8FQt+gbFpGwF75H4ismyizFB/E7R5yFW7/N+dJTwDY3gIZJAOraY M0aLzFoaXwsYTUSYBFOUMl4wLzu1iCXnz5w8Dp5oYI96GrB3R1g0KTyGN3IZtiNQsYTlUGdz o7D1z2gXkxFboPCllJp9FqQweOUrS3gdLs2Cbe1z8NnskO+6y86XUh+uVyT+qLj1hHWt8hkA 0cd9i1rq6Yp3Fe6S8H0GRy+un+N+BAGM+e8CMU/4QCJj6jd+w+fC2EfUjdTb9glspZnHWVxj g/Q2dT0GTZorbuZD2qH8auZpi+zPi5TKnIeYSgDTk0O5NyLTJwPYgznRPBRKKCLl93JGQ7/0 y+UvhM635cDpJtev0mkxmzvjzWpr5nPawc64ATLQ26ohj+Vgqb1NuREDnCLvJ59wJalc7WXg JQTs+qmhN3i4LmInS2JBecEBLiv6v+eLDTOhlpsGcBwr232oy76O4dN/Dt5OUFldN4efiPka 1PSvgUX44JPOHytbul8ZIfZ5yUWIUrISI6NuhP8N4Amjn1NmOmvoXoGiam4hDiFraTUuftjU ap3iO71ZZrgNYxpzSCtW8AW2qIxyyY1yAv7HM+nk0X+jerCPiDEGd/p1WdiiMhpvctoRy2Eq 75i2zeilkoPCYUSnwGLr9FOdQxUcRDX+7it85EOKL/rzvVa9JEJUKSLnexJl31NmqVejODT+ X+hEkRf0kKXuJE0AVTiV5yXU5u+Df5X9CplVQR1ZArA8yZ5Pe6HsvxFH7NpJuZPyQCW5aAco w8tJZ3YWpyii13voFwgUHUKhNc4L0rz3VLQYXrNjfpWV8cIejElM+TMJmPHnBTixALu3Sfni +T4iF2JcolJXAl4EsfdZdSmyl777zBXm/t/UwGMapNfcVnlutoiYSHgrO4FE+dVIzX6xxyey 1m3BzUcrrLzuIMbyoTCqp2FiIaLKNFAOHRmMVPV1puIEBXL33GCxNZAWdmYfDqGW2LT/r6jV NpvzPr9EaMmmGx4iaRWKJNH644A2/Lwgr4H0AhUJnTBNGq2OJg9PXKDjJF9iYsVz4AIpC+zC xuD1clEM++SJfK/QUIwJRUkXMuHx/o7ijnf1tVrAUTYtQtc3quLblVWBDaI0BdiFbpSNJg05 9suo+sEwlWbpjt2F8eZ1AZG2n+pLHddY544t5ofPpDnujArxn5Gf5bYLC38u7OLVPlhLWgoJ S2yloPZprEB2HfHTWU/JULN0cVZm54KnhJAl30GBlaRn+v6lu0F5wJQ/Rs3XzZq4E1+icwrA VdSNmpxOamq1BVrjpIaX2mTRidwNCfA8Un1k1Y0hGnVSnezbVP0LUo/BP2s+X4I+GcNbxlZ+ 7ClkFzeawjIR/2o/CUOWh9CkcfBHPhR7QzJnf61E/uVR6caZSXXuY7wRG4qhSa+P+YPqhzmn 8dI8tx0S5XHDg8LgqhiC4ClxbUaEx+FA2pZQMBexqACHECCWTTjgDShO167INhQFqab7W65F M1cCcZdXDuu1Cu1j246BIxdB5RWjfIW9N45VbezHlE/spybtStPjJ3L0zrX3UsHYolLgNlnD JH8bBeAGTGgvmRVkGrzs8V0AGq0Tt0abgna3uru0uE2O78ckeNrY2cg+6CVuiiLDQ5Z4B6kh gPPSKvIxehEy443vY/NEL1GNjqkO+HIS+WE3wCigetgNeqVH5/1iDoUjV37MyB9H7gbAY13n IvQlu/H5hrOubJuXl3Jn5WEKbJy2vyze+hqKePyEmhRmHqTec3r4iZbwVuCF75yrIp/6PWkF iyCU+nhUf4OWtxY+m9ZVDgGLTYZFJbMT/nBoQGTkq2yLyYzgCL7KOGpz3vLVV1gVzQpPsT+A zDkuvz16dF/qp9NNSA+BPpnIsFZJQ66VYQ2aderriSpVDi0o1Kdu4nNkQgrxiHLB0KlTuf7w 8PhbTrveCuivJrnyIlijLVzmRkMHVBBjvIVbGtE3/JX1xWrEzQgP8kGFJcNV6FvjS350a/na AH3bGcNDTv3WRJGe07e5OvPcxi+BOscHMXQPR0sol2pbhmpCLO6ALdO8jlq51F0cGDByMClM dQvxW3iDCOuw51GRfch2dLjuL1Jnsjl/3Mv/Vzxt+fQABxEWLUD6yFHLTp3DCfCF5nAqVXPK W0LXlt7eUCcS3PqMMNeanVQSQA4vjTu8m0SVh2x4u3j4qeV8O4R78fEGbDD4uVWJoBCbrsDX mj+SGax8nibkC5b87cgv9Uyx7R4E7SXF8y9N7XuXhAWg7r20Gk8IscehmAaeanOIuKE/4/1y lFAIkTSBXhp7Ght6ZGu811S0K8pCihKCCzVhgniozOAiQY+09XSZxmtykT8NI30rK/g+U5fR V/+qapXT0K+7FPZSftW75z3ZWBrxekWCGXAVScrCJj1l39AjUdDQat53RhSO815qRV5K0Y9S EpV+9Ig5IagWSDJ1Afh9Dvcjn6LsJ9Zcjk+Z3TVEN6H2zd+OE4Xszp0F1picjsvvA==
- Ironport-hdrordr: A9a23:5j7YbalwqxH9LlSZZmU+b79HmC3pDfMNimdD5ihNYBxZY6Wkfp +V8cjzhCWftN9OYhodcIi7Sc+9qADnhOdICOgqTMWftWzd1FdAQ7sSibcKrweAJ8SczJ8p6U 4DSdkYNDSYNzET4qjHCWKDYrUdKay8gcWVbJDlvhVQpG9RC51I3kNcMEK2A0d2TA5JCd4SD5 yH/PdKoDKmZDA+ctm7LmNtZZm1m/T70LbdJTIWDR8u7weDyRmy7qThLhSe1hACFxtS3LYZ93 TfmQCR3NTUjxj78G6V64efh64m0ecJ+OEzTvBkufJlZwkEvzzYL7iIA9W5zXwISa+UmRkXeZ L30m8d1oxImgjslyeO0G/QMwWM6kdV15bO8y7nvZLYm72JeBsqT85awY5JeBrQ7EQt+Nl6za JQxmqc855aFwnJkijx78XBE0gCrDvGnVMy1eoIy3BPW4oXb7Fc6YQZ4UNOCZ8FWCb38pouHu ViBNzVoPxWbVSZZXbEuXQH+q3dYp0eJGb4fqFZgL3p79F/pgEE83cl
- Ironport-phdr: A9a23:098C+xBcpks9Hukf9XqYUyQUoEoY04WdBeb1wqQuh78GSKm/5ZOqZ BWZua43ygeRFt+Asqgdw8Pt8IneGkU4oqy9+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7F skRHHVs/nW8LFQHUJ2mPw6arXK99yMdFQviPgRpOOv1BpTSj8Oq3Oyu5pHfeQpFiTSjbb9oM Bm6sQrdutcYjId/NKo91wbCr2dVdehR2W5nKlWfkgrm6Mu34JBt7Tlbteg7985HX6X6fqA4Q qJdAT87LW0759DluAfaQweX6XQSTmsZkhxTAwjY9x76RYv+sjH7tuVmxiaXO9D9QK0uVjSj6 6drTwLoiDsCOjUk/mzbltB8gaRGqxymvRN/worUa5yIOvpmZKPdfNUaRWVcVcpVWSFNHoawY o0SBOQDIOlYtZHwqVsQoxWjGQmiCuDhxSNHiXLtx6I2z/gtHBva0AA8Hd8DtmnfotXvNKcVV OC41LfGxijCb/NY1zfy8o7IcxA8qvyLRr1/bcjRyEgvFgLFjlSQqZDlPj2O2+QKrmib8+5gV eWoi24ksQ1+vj+vxsI1h4TPm4kaxUzK+z9jz4YpOd23VlR7Ydi8HZZQtSyXOIl7T90+T2x2p io31L8LtJqlcSULzJkpyBHSZv6bfoaH/h/uVuecLzd4iX9lZr6zmRK//0agx+HiSsW51ktBo CRCktnJrH8N1hrT59CZSvtm4kih3iuA2B7K5u5YPE80k7DXK5g/zb4sjpYcrV7METLxmEnvi q+WeF4k9vKw6+XnZLjtu5ySN5dshwz+LKgigNGzDfg2PwQUUGWW9/6w2b7+8UHhXrlHj+E6n 6fcvZzHOcgWoq+0DgpW34o99xqyCiqp3dcdkHQCMV5JZhSKhJX3NlHKPfD4Fuu/jEq2kDl2x vDHP6PuD43RInXFjbzvZ6xy61RGxwo21d1f54xbCrUGIP/rREH+ttLWAAUlPQCozevqFtty2 p8CVW6RGKOZN77SsUOT6eIoPumMYpIatCzlK/g/4P7ukWE2lkMBfamo2psXbmq0HvN7I0WFZ XrshdABEWQQsgUiS+zqjUWOUT9VZ3msQ6Ix/jE2BJy8AYveWoygjqaN0Si1E5FMZW1KF0iAE XLyeIWFX/cMZjiSIshkkjEcTreuV40h1BCutQ76y7tnLvbU+yMDuJLkydh1++nTlRY19Tx3F ciSz2aNT2RskmMOXDA5xLp/rlBlylefzah4hORVGcFL6/NTTgg6LYLcz/B9C93qRg3OZMqGS FG/TtWgDzExVck8w8QOYkZ4A9WtlArP3yusA78PlryEHoY48qzG3yu5G8EogX3P2K5kiVc9a spJL2yvwKBlvUCHDIfFlACfmb2CdKIG3SeL+n3VnkSUu0QNbEZxX6vMW2FXMkHdr8bo91LCU 6CGDqk7NgxGyoiJLa4cOY6htklPWPq2YIeWWGm2gWrlXk7gLtKkaYPrfz5YxyDBEA0flBhV+ 3+aNA84DyPnomTEDTUoG0i8K1j0/7xYr3W2BlQx0xnMd1dogrC++AwElO2cV+w72a8YvCAmq HN/G1Pul8nOBY+4rhF6NL5Zfct75V5G0WzDsAkoNJeiPbFzl14CbCxwol/q0BJ0TI5HlJtit 2skmSx1L6/Qy1Zdb3WY0JT3b6XQMXX39QuzZrT+5mDy6OzOoYwysKxi7VL+oAuuC0wutW191 MVY2Ged4ZOMCxcOVZX2UQA88B0SS6jyRC476suU0HRtNfLxqTrew5cyA/NjzB+8ftBZOafCF QnoEsRcCdL8YOot00OkaB4JJoUwvOY9It+mev2a2aWqIPconTSoin5C6Zx81UTE/jR1S+rB1 ZIIi/+C2Q7PWzD5hVan+sf5/OIMLTsZHHiu2DnkGJF5YbBueYEMCiGlJMj2jtRyipjxWmJJo Ua5DgBO08uodByOKl3liFAKkx1P+jr7wm3olm8R8XlhtKeU0S3Qzv63cRMGPjUOX2x+lRL3J pDyidkGXU+uZgxvlR2/5E+8ybIIwcY3Z2TVX0pMeDD7am94Va7l/LCJYdxe+YIorTp/V/mgZ VedSfj2pB5QgEaBVyNOgSs2cT2noMCzlRd4mnOMPXZvs1LeZN10whDcotfbQLQCu1hODDk9g j7RCF+mOtCv9tjBjJbPvNe1UGe5X4FSey3mpW+ZnBOy/nYiQRi2nvTo38biDRB/yijjkd9jS STPqh/4JIjtzaWzd+x9LAFkA1r16swyHY8b8MN4jpoSy2kLl5WJ4lIAjHv3NtJYn6n5aTIBS CUKzNjc/AX+kBA5aCvRnMSlDTPNm4NofJGib3kT2z4h4swvau/c97FCkSZv4xK5oQ/Xfflhj 2IYwPoq5mQdhrJBsw4swyOBR7EKSBQCe3W0zFLUtJbu9fYyBi7na7W72UtgkMr0CbiDploZQ 3PlYtI5Gjc26MxjMVXK2Xm164f+edCWY8hA03/c2xrGkeVRL4o80/QQgi8yc2j2v2802v87k QNG2oymuI+AKCNm+6fzUXs6fnXlItge/D3gl/MUlM2UzZG+D5V9BR0MQYfsSvWrVjkVsL60U mTGWC15oXCdF73FGAaZ40oztHPDHaegMHSPLWUYx9FvF1GNYVZSiwcOUHAmj4Y0Q0q0kdf5f h4ztVVzrhbo7wFBweVyO1zjX3fD8U22PywsRsHXLQIKvF0aoRaPd5TYtqUqQmlZ5sHz8FTLc zTEIVwOVSZQBCnmTxjiJuX8uIOGqrDAQLL4d7yXPP2PsbAMCq3OnMr1lNMgp3HVaI2OJiUwU qd9gxIYGyg/Q4OAxFBtA2QWj36fNpbH4kvjvHUx9ofmr7zqQFy9v4LXUukLaIw99Uzu2fXRc LLA4UQxYTdAiMFWzCeRmuFGhQwc13k1JWvqTeVItDaTHvjZwvYFVkdCOS0vbJAav/pkhlsff pOC77G9nr9g0KxvAg8cBwW4w5OnOZRRcWrlbAuVVgHWbfyHPWOZmcivOPHlEOQCgrkM7E++4 W7DQR2kY27L0jDtU1rH3fhkqiadMVQevYi8dk0oEm3/VJf9bQX9NtZrjDowyLlyh3XQNGdaP yIuO0VK5qad6y9VmJAdUyRI82ZlIO+Ymi2Y8/iQK5AYtuFuCzh1kOQS6Wozyr9c5iVJDPJvn y6aotlrqlCg2u6Br1gvGAJJsSpOjZmXsF9KBZT1zqMYAl35pEpXq2KNFx4Nut1pTMX1vLxdw cTOk6S1Lype99XT/o0XAM2VTaDPeHstPBz1GSLFWQsISTn4fWrbhkFbjLST7ijI9N5j8sOqx MFIGuYIMT59XukXAUlkAtEYdZJ+Xzd/1KWekNZN/n2m6h/YWMRduJnDEPOUG/TmbjiD3twmL 1MFx631KYMLO8j1wUtnPxNwl4bYClvBXcxSiip8cgszp0YL+397BD5WuQqteka27XkfGOTh1 AYxkRd7aP8x+S3E32YbHmCS/wANyBFr39L4nTqWbTj9ar+qWp1bADb1sE53NY7nRwFybku5m kkuZ1KmD/pByrBnc25skgrVv5BCTOVdQaNzaxgV3fiLZv8s3Dy0Sw2b9GN/37OeIqY6zFFsd oOwpXVd3Q4ldMQyOaHbOKtOyB5Xm76KuSirkOs2xV1GT67i2GSPZCoPv09OPb4jdXPAFglE7 hGenzxEey4HUP94+ppX
- Ironport-sdr: 6801db0d_+ntyofCG7bXwK8rZxmnHA8/vxdhI8XgTa37pts+fxCEGCtP 1ioGDow/EYkLqK/OXF4EmKDwkNVq8gdnIoua1Ng==
- Msip_labels:
Hi,
I am currently working on solving a discrete logarithm problem in the finite field GF(p), where the prime p satisfies the relation p−1=16q^2 with q also being prime. the command I use is:
-
[https://file+.vscode-resource.vscode-cdn.net/d%3A/CTF_challs/pytools/useful%20tools/cado-nfs.py]./cado-nfs.py -dlp -ell 10939385599812931291 target=1520104544106795253621809691052117121393 1914722516822312424274313822430190826897
And here target satisfy target^q=1 (mod p). When I attempt to solve this DLP using CADO-NFS, the result I obtain is 0:
-
Info:root: logbase = 1445716020256136655461963773328391563938
-
Info:root: target = 1520104544106795253621809691052117121393
-
Info:root: log(target) = 0 mod ell
After researching this issue, I came across a similar question raised in the mailing list archives from August 2019 "[Cado-nfs-discuss] DLP in GF(p) turns out to be 0".
I would like to ask:
-
Was the issue mentioned in that discussion eventually resolved?
-
If so, is there a specific way to configure or use CADO-NFS to correctly handle such a case?
Any guidance or suggestions would be greatly appreciated. Thank you very much for your time and for your work on this great tool.
Best regards,
Tiffany
Tiffany
- [cado-nfs] solving DLP in GF(p) with ell^2 divides p-1 using CADO-NFS, T iffany, 04/18/2025
- Re: [cado-nfs] solving DLP in GF(p) with ell^2 divides p-1 using CADO-NFS, Pierrick Gaudry, 04/18/2025
Archive powered by MHonArc 2.6.19+.