Skip to Content.
Sympa Menu

cado-nfs - [cado-nfs] Can things for solving discrete logarithms be accelerated if a more perfomant alogrithm was found to factoring far larger modulus ?

Subject: Discussion related to cado-nfs

List archive

[cado-nfs] Can things for solving discrete logarithms be accelerated if a more perfomant alogrithm was found to factoring far larger modulus ?


Chronological Thread 
  • From: Laël Cellier <lael.cellier@laposte.net>
  • To: cado-nfs@inria.fr
  • Subject: [cado-nfs] Can things for solving discrete logarithms be accelerated if a more perfomant alogrithm was found to factoring far larger modulus ?
  • Date: Thu, 29 May 2025 23:51:07 +0200
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None smtp.pra=lael.cellier@laposte.net; spf=Pass smtp.mailfrom=lael.cellier@laposte.net; spf=None smtp.helo=postmaster@smtp-outgoing-2003.laposte.net
  • Ironport-data: A9a23:yHBovaLsiDg9UM2eFE+RYZElxSXFcZb7ZxGr2PjKsXjdYENS3zUOm zQXWzuOMv3eYzbyedwnbYu+8kIF78KGzN41TgEd+CA2RRqmi+KVXIXDdh+Y0wC6d5CYEho/t 63yTvGacajYm1eF/k/F3oDJ9CU6j+fSLlbFILasEjhrQgN5QzsWhxtmmuoo6qZlmtHR7zml4 LsemOWBfgb7s9JIGjhMsf/b9Uk+5KiaVA4w5zTSW9gb5DcyqFFOVPrzFYnpR1PkT49dGPKNR uqr5NlVKUuEl/uFIorNfofTKiXmcJaKVeS9oiY+t5yZv/R3jndaPpDXmxYrQRw/Zz2hx7idw TjW3HC6YV9B0qbkwIzxX/TEes3X0GIvFLLveBCCXcKvI0LuaGHryPxTKFMNMrI206VnPmd20 schJ2VYBvyDr7reLLOTUexwnoEkMdXkO4IZtTQ6lWmCS/IvWZfYX6iM49JEtNsyrpkQRbCPP YxAM2YpNU2YC/FMEg9/5JYWmO6lgj/0fjlcqV+Pja4++2/I0AE31rXxWDbQUobQGZgMxxnH9 goq+UzfOEBDCdjC+wOqsV+A283ArSSmdbw7QejQGvlC2wfLmTFLUnX6T2CTqvC1jQu4Vcl3M F0R4iNorK4o9UXtQMOVYvGjiGWBogZZXMdMHOo77g7IkPKMuECdD3ADVSJMLtorqKfaWADGy HeShdTiDAFLooaadly0taerqwuVAhEaeDpqiTA/cSMJ5NzqoYcWhx3JT8p+HKPdsjETMWysq 9xthHVi74j/nfI2O7OHEUfvrQjEm3QkZhUw+h2SWX+54QR4YoHgPdTwsh7f5O5HN5qUCF+Mo BDoevRyDshQVPlhdwTUHo3h+Y1FAd7ZalUwZnYzRvEcG8yFoSLLQGypyGgWyL1VGsgFYyT1R 0TYpBlc4pReVFPzMvMnP9/uUpx0nfm/fTgAahwyRoQVCnSWXFHdlByCmWbPgQgBbWBzy/1ja f93j+71VydLYUiY8NZGb7xHieB2nnpWKZL7Wpfhyxij0LyTLGWcIYrpw3PQBt3VGJis+V2Pm /4GbpPi40wGDIXWPHOLmaZNdgpiBSZgWvjLRzl/KrTrzvxORDt5U6e5LHJIU9ANopm5Yc+Rp SzhChIEkgCu7ZAFQC3TAk1ehHrUdc4XhRoG0eYEZD5EAlB6Od/zvpQMPYA6Z6cm/+FFxPt5B atNMcaZD/gFDnyN9z0BZNOv5MZvZTa6tzKoZiCFWTkYe4I/Zgrr/tS/QBDj2hNTBQWKtOw/g Yaa6CXlfbQ5ST9PNv3mMMCU8wvpvFw2uv5DYE/TE9wCJGTu6NdLLgLyvN8WIuYNCw7y9hGE3 F2sBTMd+O3BiK4u0dzznavfhZyYI+h/OUt7Hmfg8re9MxfBzFej2YNtVOWpfyjXcmH/6IGOR Lxy5O6lFtEpkHJhkZtOI5wywY0Qv9LQ9qJnlCJ6F3D1XnGXI7JHIEje+/JQt6dIl4RriSHvV m2hotBlaKi0YuX7G1ssJS0gXOSJ9dcQvhLwtf0VAkHL1BVbzYq9c3d5Hkez0XRGDb5PLoka7 /8ru5cW5yyBmxMaCIu6oR4OxVucDE4rcvsBjY4bMr/JmwBw61BlYL7gMAHUzqyLSe1xNhgNH mfJqovE369R12jTQUoVTHLt59dQtb4KmRJNzWIBGWi3p8r4tqcJ+yNVoBsKTVVz7xRY0uhMF HBhGG9rKI6voTp5pshxcFq9OgNGBRe21FP7kH1RplaEUnuYb23pB08+MNar40o23T99fD9a3 bfA00fjc2/gU//Q1xsIe3xOiqLcX+0q0zbdieabEN+jI6AqUQH6g6SrW3UEmyHnDew1mkfDg +tgp8R0VoHWKg8SpPcdJ7SB9LFNVi2BGnNOccth8IwNA2vYXjO4ghqKCkKpf/JyN+74ylC5B +NuN/BweUyHjgjWlQ8iBIkIP7NQt9wq7oBberrUeEg3g4HGpT9t6J/t5izygVEweOpXkOE/F 5jwcgyTGWnBlFpWnG7w9PN/AFSaWuVdRgPA37GSyt4rRrYjq+BndH8g3oSk50u1NBRVxDPKn QfhSZKP8clc59VNpbb8KoRCGAS+Fv3rXsuq7g2YkopDfPHPA+j0piIXrVjsZV0ONpBIRdhHr 7KH6trq7lKdrZMaenL9nomBHIYY98mdYfddN/yvDXhFnBmtXN3nzAsD9luZd71IsoJ5zeu2S zSobPCfcYYuZO5c43lOMQ5MPg04CZmrSovd/QaD9++tDDoZ2iz5dOKXz2fjNzxnR3VZKq/AB R/RkNfwwNJh9aBnJgIOXtNiCL9GeG7TY7MsLYDNhGPJH1uTow2wv5X5nkAd8hDNMH6PFfj67 b/jRhTTcBeTurnC/OpGsr5d7wEmM3JgvdYeJk4t2cZ6qzSfPl40Ke4wNZYnCJYNtgfQ0Jr+R i/GbUp8KCHbcAlHTy7B44XYbl/CPtANB9b3GGV4tQfcISK7H5iJD7Zd5z9tqSU+MCfqyOa8b 8oS4DvsNxy22YtkXvsX+uf9u+p82/fG3TgdzCgRSSAp78o2Wt3mFUCNHTahkQTcFt3V0ULWO WcyRGZLBRvjERW3Fc94fGVJFVcfsS+HI/DEq8uQ6I63hmlZ5LQoJD7D1yXb1rQba98WKfgIS G+fq66l/TWNwnJK0Uc2k4tBvEK3YM5n2uC+JbfkXhEf2ae99gzL+i/EcTUnFKkfxeKUL78Re vRALZTz6IRp5X29AIGr9Dg=
  • Ironport-hdrordr: A9a23:JpUHaqFZCD0KrM4DpLqEAseALOsnbusQ8zAXPjNKOGRom6uj5r 2TdZUgpGXJYVMqKQ0dcL+7Scq9qe21z+8P3WB8B8bHYOCEghrLEGgB1+vfKlTbckWVl9K1vp 0QFJSWZueAa2SSwfyKhTVQaOxQueWvweSsnOCby39sSAFsZchbgztRO0KfC0ozXhBPAZ80C5 aYj/AomxOQPXEPaYCgH3EARODfp9rE/aiIXTc2Qxou6AzLgjOs9bLgHnGjtXojbw8=
  • Ironport-phdr: A9a23:U39VhxK6ihLf3gdSktmcuE5sWUAX0o4c3iYr45Yqw4hDbr6kt8y7e hCEvrM11BSTAt+Ho7Ic0qyK6PqmATRBqb+681k8M7V0FCU5wf0MmAIhBMPXQWbaF9XNKxIAI cJZSVV+9Gu6O0UGUOz3ZlnVv2HgpWVKQka3OgV6PPn6FZDPhMqrye+y54fTYwJVjzahfL9+N hq7oAvfu8UMnYduNqk9xgXLr3dWdOld2GdkKU6Okxrm6cq98oBv/z5Mt/498sJLTLn3cbk/Q bFEAzsqNHw46tfsuRffUwWE+2ESUn8RkhpGAgjF6A/1U5LsuSbkteRzxTeXM9TuQb87RTqt4 aFrSAT1iCgcLD427HvXis1rg61Fph+qugFyzJTVYIGRM/p+Y7/dcNYHTmdPQspdSypMCZ66Y oASDeQOIPxYopH+qVUAohSxCwmiCv7xxDFSnnH5waI03v89EQHfxgEsA84CvGnWodjzKawcU fq1zK7NzTjbaf1Zwyv66IzVeR0/v/6MWbZwccvPxkk1CgjIiVGQppb7MDORzOgCr3aU7+5kV eKulWEnsRp8ojy1ycc0jYnJnZ4VxU7e+SV/3ok1OcS1RUhmatGrDJVerTuVN5dqQsw8WWFov j43x6EYtZKlcyUHx4grywDcZvCabYSG7RHuWuiTLDtmhH9pZbOyiwi9/ES91uHxS9W53VVXo ydKjtTBtWwB2wLP58WBV/Bz/V+h1C6S2w3S9u1IO0Q5mbTBJ5I83LI9mYAfvVneEiPqgEn7j 7Gael8l9+Wq8ejqbbXrqoWBO4NphAzzNLkll9K7AeQlKQgOQ3aU+f6h2r3i/Ez2Xq1HguEwn 6LEqp7VP94bqbS8AwJN0oYs9RK/DzC+3dQDmHkHMEpFdAuAj4j0J1HOL/f4Dfa5g1SjiTtn2 ezKMqHvD5nXKnjMiq/hfbFm605A1gU/19Zf6IxICr0ZIfLzXFH+tMDAAxMkMgG43/zrBdFj2 o8ERG6DHKCUPLnPvVOV+u4jO+yMa5UUuDb5Jfgl/fnujXohlF8ZZ6amw58XZGqkEft4J0WZZ XvsjckbEWoRugoxVvTqiFqZUT5PeXm+RaQ86S8nCI6+C4fMXZiigKad0yejAp1WemdGB0iRH XvwbYWLR+8MaD6OIs9mijELSaKuRJIm1R23sg/6xaFnI/HP+iwYsJLjzMJ66/fSlRE07zx0D t6S33uDT2FuzSs0QGo91ax45Epz0X+C17J5irpWD499/fRMByMztpqU5OF+D9H/QEqVet6ET BCtT9GiADwrZtY429gVf0s7Hdi+2EOQlxG2CqMYwuTYTKc/9bjRiiCZz6dVzn/H0PNklFw6W o5VMmbggKdj9g/VDoqPkkODlq/se75PlDXV+jKlymyD9FpdTBY2Sb/MCHQWa0+Qptn94kLPV ZeqAKwgKRdMj8iPNvgCccXn2G1PX+yrI9HCeyS0kma0CwyPw+aIZYfuPW4Q2CHcBVIslwkL+ m2aOE44Czvy63nGAmlIElTiK1jp7fE4qH6/SRosyBqWakR6y7ev0gUQmeTZTO4P0bUFvihk8 W0sRxC51srREMaN4QxsYM2wePsb51FKnSLcvg15ZNm7Krx6w0QZeEJxtl/v0BN+DsNBl9Irp TUk1lg6L6XQy15Hez6CuPK4crTKNmn/+gyuYK/Kyxnf1tiR4KIG9PU/rR3qogioEkMo93gv3 cNS1jOQ4ZDDDQxaVpyUMA5/8xF3o/fRby055o7O/XllKa6vrjKE3d81RaMkxhumY9ZDIfacD gahdq9ST8OqKeEshx2odkddYrgUpfRyZpn6MaLfgP3OXq4ohj+tgGVZ7Zoo10uN83A5UevUx 9MfxPre2AKbVjD6hVPns8btmIkCaytBewj3gSXiGoNVYbV/OIgRDmL7acm+y9E4jJPpX39V7 nanDksBw9OkPxyfcxauuG8YnVRSunGhlSaimnZwmjwt6KGS2CjPzv7KcBMfPXVXSS9kgEumc u3Wx5gKGUOvaQYujh6s4033krNaqKpIJG7WWU5UfiLyIgmOS4OIv6GZK45K4ZIs62BMVfikJ EqdQfj7qgcb1CXqGy1fwio6fnekoMexkxt/gWObZHF9yRiRMcV5yBOZ79HYQf9cxBICTTF/k iXaQF6xI5Gl8M6VmJHKru2lHzv/DtsCK2+yl9/G7XLjrWRxZH/31+i+gNjmDRQ33Wfg2t9mW D+J5Bfwb4/31rirZOduf01mHlj5uK8YUsl1loo9go1V2GBP38vNuytd1z6pbZMCgPqtCRhFD SQGyNPU/gX/jUhqL3bTgpn8Sm3Y2MxqId+zfmIR3Cs5qcFMEqadqrJezk4X6hK1qxzcZf9lk 3IT0/wrvTQeiuwN/gEgyiGcD6o6GUBAOjfwmlKO4sz0/8A1LC6/NKO90kZzh4XrCLiPpkdXV XL9e5o4NSt59sJkLF+K1nDvoNKBGpGYfZcYsRualA3Fhu5eJccql/YEsiFgPHr0oXwvz+Nox Qwrx5yxu5KLbnl85K/sSAANLSX7PolAn1OlxbYbhMud2JqjW4lsCileFoW9VuqmSXoTrai1b ljWVmxm7C7BRfyBQUjFtg0OQ2vnNZetOjnXIXAYyY8nXxyBPAlFhwtSWjwmn5k/HwTsxcr7c U4/6CpDrlj/4gBBzO5lLXydGi/WuRuoZzEoSZOeMAse7wdM4F3QONCf6eQ7Fj9R/5mopgiAY mKBYAEAAWYMU02CT1ftW9vmrcHH6PSdD/GiIuHmerCSsalZSuuHwpOp3c48p27XcMGGJn55E /B93EdfHDh4F8nfhzQTWnkXmibKPKv57F+3/ix6qNz68ey+AVy3o9rVTeIIbZM2okjl5MXLf /Sdjyt4NztCg5YFxHuSjaMawEZXkSZlMT+kDbUHsyfJCqPWgK5eSRABOEYRfINF6bwx2g5VN IvVkNTwg/R8h/MxTVxIUVjgl9uBYcUSJHqhORXBCVrBZ9HkbXXbhtr6Z6+xU+galOJPqxi5o iqWCWf4Oyib0j70Sx+oMOdDyXvDZEcYvIildQ1xBC7lQc6sOXjZeJdnyDYxx7MznHbDM2URZ CN9f016pbqV9SpEg/97FgSpC1JhJPGDgDqUqe/VNsRO2ROEKiB9j+VB/Hl8zbZJvngsrB1dg y7Otptpvk2pleiJxX89CEIV7DJCnIWQoUgkP6jFpMEoZA==
  • Ironport-sdr: 6838d6d1_fHRbgm/OHe054xBvR3foKnRZZ/Rqdkdk2opPUoXrK2ZN3Of orrTjocn2yNO77S6dmDt2/pzqo6hTY9mTiEHAMg==

Bonjour,

if there were an algorithm for factoring any nearly a thousand bits Integer in minutes, would it help solving discrete logarithms having 200/300 bits large prime factors inside it’s modulus. And what about finite fields of prime powers ?

(c’est ce message qu’il faut poster et pas le précédent)


Cordialement,





Archive powered by MHonArc 2.6.19+.

Top of Page