
Optional
User

Additions

Functionality
Combinatorial

Geometric
Traits

D
at

a 
St

ru
ct

ur
e

Tr
ia

ng
ul

at
io

n

Tr
ia

ng
ul

at
io

n

VertexBase CellBase

UserVB UserCB

Vertex Cell

Derivation

Template
Parameters

Functionality
Geometric

locate(), insert()... Types

Figure 1.5: Triangulation software design.

public:
typedef typename Vb::Point Point;
typedef typename Vb::Cell_handle Cell_handle;

template < class TDS2 >
struct Rebind_TDS {

typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef My_vertex<GT, Vb2> Other;

};

My_vertex() {}
My_vertex(const Point&p) : Vb(p) {}
My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}

...
};
... // The rest has not changed

The situation is exactly similar for cell base classes. Section ?? provides more detailed information.

1.5 Complexity and Performance

In 3D, the worst case complexity of a triangulation is quadratic in the number of points. For Delaunay triangu-
lations, this bound is reached in cases such as points equally distributed on two non-coplanar lines. However,

8



the good news is that, in many cases, the complexity of a Delaunay triangulation is linear or close to linear in
the number of points. Several articles have proven such good complexity bounds for specific point distributions,
such as points distributed on surfaces under some conditions.

1.5.1 Running Time

There are several algorithms provided in this package. We will focus here on the following ones and give
practical numbers on their efficiency :

• construction of a triangulation from a range of points,

• location of a point (using the locate function),

• removal of a vertex (using the remove function).

We will use the following types of triangulations, using Exact predicates inexact constructions kernel as geo-
metric traits (combined with Regular triangulation euclidean traits 3 in the weighted case) :

• Delaunay : Delaunay triangulation 3

• Delaunay - Fast location : Delaunay triangulation 3 with Fast location

• Regular : Regular triangulation 3 (default setting : memorize hidden points)

• Regular - No hidden points : Regular triangulation 3 with hidden points discarded (using
Triangulation cell base 3 instead of Regular triangulation cell base 3).

Figure 1.6 shows, for all these types of triangulations, the times in seconds taken to build a triangulation from
a given number of points, then the average time to perform one point location in triangulations of various
sizes, and the average time to perform one vertex removal (which is largely independant on the size of the
triangulation).

The data sets used here are points randomly distributed in the unit cube (the coordinates are generated using
the drand48 C function). In the weighted case, the weights are all zero, which means that there are actually no
hidden points during execution.

The measurements have been performed using CGAL 3.6, using the GNU C++ compiler version 4.3.2, under
Linux (Fedora 10 distribution), with the compilation options -O3 -DCGAL NDEBUG. The computer used was
equiped with a 64bit Intel Xeon 3GHz processor and 32MB of RAM (a recent desktop machine as of 2009).

1.5.2 Memory Usage

We give here some indication about the memory usage of the triangulations. Those structures being intensively
based on pointers, the size almost doubles on 64bit platforms compared to 32bit.

The size also depends on the size of the point type which is copied in the vertices (hence on the kernel).
Obviously, any user data added to vertices and cells also affect the memory used.

More specifically, the memory space used to store a triangulation is first a function of the size of its Vertex
and Cell types times their numbers (and for volumic distribution, one sees about 6.7 times more cells than
vertices). However, these are stored in memory using Compact container, which allocates them in lists of

9



Delaunay Delaunay Regular Regular
Fast location No hidden points

Construction from 102 points 0.00054 0.000576 0.000948 0.000955
Construction from 103 points 0.00724 0.00748 0.0114 0.0111
Construction from 104 points 0.0785 0.0838 0.122 0.117
Construction from 105 points 0.827 0.878 1.25 1.19
Construction from 106 points 8.5 9.07 12.6 12.2
Construction from 107 points 87.4 92.5 129 125
Point location in 102 points 9.93e-07 1.06e-06 7.19e-06 6.99e-06
Point location in 103 points 2.25e-06 1.93e-06 1.73e-05 1.76e-05
Point location in 104 points 4.79e-06 3.09e-06 3.96e-05 3.76e-05
Point location in 105 points 2.98e-05 6.12e-06 1.06e-04 1.06e-04
Point location in 106 points 1e-04 9.65e-06 2.7e-04 2.67e-04
Point location in 107 points 2.59e-04 1.33e-05 6.25e-04 6.25e-04
Vertex removal 1e-04 1.03e-04 1.42e-04 1.38e-04

Figure 1.6: Running times for algorithms on 3D triangulations.

Delaunay Delaunay Regular Regular
Fast location No hidden points

32bit 274 291 336 282
64bit 519 553 635 527

Figure 1.7: Memory usage in bytes per point for large data sets.

blocks of growing size, and this requires some additional overhead for bookkeeping. Moreover, memory is
only released to the system when clearing or destroying the triangulation. This can be important for algorithms
like simplifications of data sets which will produce fragmented memory usage (doing fresh copies of the data
structures are one way out in such cases). The asymptotic memory overhead of Compact container for its
internal bookkeeping is otherwise on the order of O(

√
n).

Figure 1.7 shows the number of bytes used per points, as measured empirically using Memory sizer for large
triangulations (106 random points).

1.5.3 Variability Depending on the Data Sets and the Kernel

Besides the complexity of the Delaunay triangulation that varies with the distribution of the points, another
critical aspect affects the efficiency : the degeneracy of the data sets. These algorithms are quite sensitive to
numerical accuracy and it is important to run them using exact predicates.

Using a kernel with no exact predicates will quickly lead to crashes or infinite loops once they are executed
on non-random data sets. More precisely, problems appear with data sets which contain (nearly) degenerate
cases for the orientation and side of oriented sphere predicates, namely when there are (nearly) coplanar or
(nearly) cospherical points. This unfortunately happens often in practice with data coming from various kinds
of scanners or other automatic acquisition devices.

Using an inexact kernel such as Simple cartesian<double> would lead to optimal performance, which is only
about 30% better than Exact predicates inexact constructions kernel. The latter is strongly recommended
since it takes care about potential robustness issues. The former can be used for benchmarking purposes mostly,
or when you really know that your data sets won’t exhibit any robustness issue.

10



Exact predicates take more time to compute when they hit (nearly) degenerate cases. Depending on the data set,
this can have a visible impact on the overall performance of the algorithm or not.

Sometimes you need exact constructions as well, so Exact predicates exact constructions kernel is a must.
This will slow down the computations by a factor of 4 to 5 at least (it can be much more).

1.6 Examples

1.6.1 Basic Example

This example shows the incremental construction of a 3D triangulation, the location of a point and how to
perform elementary operations on indices in a cell. It uses the default parameter of the Triangulation 3 class.

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;

int main()
{

// construction from a list of points :
std::list<Point> L;
L.push_front(Point(0,0,0));
L.push_front(Point(1,0,0));
L.push_front(Point(0,1,0));

Triangulation T(L.begin(), L.end());

int n = T.number_of_vertices();

// insertion from a vector :
std::vector<Point> V(3);
V[0] = Point(0,0,1);
V[1] = Point(1,1,1);
V[2] = Point(2,2,2);

n = n + T.insert(V.begin(), V.end());

11


