Subject: CGAL users discussion list
List archive
- From: "Sebastien Loriot (GeometryFactory)" <>
- To:
- Subject: Re: [cgal-discuss] Bug in assign?
- Date: Mon, 12 Jul 2010 08:37:45 +0200
Dear Bernhard,
Thanks for your bug report.
I made a fix that will appear in the next release of CGAL.
Here is the diff together with the patched file (it replaces
include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h)
Best,
Sebastien.
Bernhard Kornberger wrote:
Hello,
I need to compute the intersection of two triangles in 3D, and
the assign function does not work as expected. Here is a minimal
example: http://geom.at/test_intersection.zip
#include <stdio.h>
#include <iostream>
using namespace std;
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
typedef CGAL::Exact_predicates_exact_constructions_kernel K;
typedef K::Triangle_3 Triangle_3;
typedef K::Point_3 Point_3;
typedef K::Line_3 Line_3;
typedef K::Segment_3 Segment_3;
int main(int,char**)
{
Point_3 a(10,-30,0); Point_3 b(-10,-30,0);
Point_3 c(-10,30,0);
Point_3 d(0,50,50);
Point_3 e(0,50,0);
Point_3 f(0,0,0);
// Two input triangles: We want to compute their intersection segment or point
Triangle_3 t1(a,b,c);
Triangle_3 t2(d,e,f);
// If we exchange t1 and t2 we have no problem
// swap(t1,t2);
cout << t1<<endl;
cout << t2<<endl;
// Let's assume that t1 and t2 are not coplanar. Compute the intersection 'pl1_pl2' of their supporting planes.
assert(do_intersect(t1,t2));
CGAL::Object pl1_pl2=CGAL::intersection(t1.supporting_plane(),t2.supporting_plane());
Line_3 lin;
if(CGAL::assign(lin,pl1_pl2)) cout << "The intersection of the supporting planes is a line: "<<lin<<endl;
// We compute the intersection 't1_lin' of the line with the first triangle assert(do_intersect(t1,lin)); CGAL::Object t1_lin=CGAL::intersection(t1,lin);
Segment_3 tempSegment;
Segment_3 finalSegment;
Point_3 finalPoint;
// ...and if 't1_lin' is a segment
if(CGAL::assign(tempSegment,t1_lin))
{
cout<<"tempSegment is: "<<tempSegment<<endl;
CGAL::Object t2_tempSegment=CGAL::intersection(t2,tempSegment);
if(CGAL::assign(finalSegment,t2_tempSegment))
{
cout << "The final intersection of t1 and t2 is this segment: "<<finalSegment<<endl;
if(finalSegment.source()==finalSegment.target()) cout << "source and target are the same point"<<endl;
else cout << "The squared distance between source and target is: "<<squared_distance(finalSegment.source(),finalSegment.target())<<endl;
}
else if(CGAL::assign(finalPoint,t2_tempSegment))
{
cout << "The intersection is a single point: "<<finalPoint<<endl;
}
}
else
{
if(CGAL::assign(finalPoint,t1_lin))
{
cout << "The intersection is a single point (as expected)"<<endl;
}
else
{
cout << "Oops"<<endl;
}
}
}
The output is:
> ./intersect
10 -30 0 -10 -30 0 -10 30 0
0 50 50 0 50 0 0 0 0
The intersection of the supporting planes is a line: -0 -0 -0 -0 -3e+06 -0
tempSegment is: -0 -0 -0 -0 -30 -0
The final intersection of t1 and t2 is this segment: -0 -0 -0 0 0 0
source and target are the same point
So we get a segment from (0,0,0) to (0,0,0) instead of a Point(0,0,0).
CGAL 3.6.0 on a 64bit machine running Ubuntu:
2.6.32-23-generic #37-Ubuntu SMP Fri Jun 11 08:03:28 UTC 2010 x86_64 GNU/Linux
Best
Bernhard
// Copyright (c) 2009 GeometryFactory (France), INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL: svn+ssh:///svn/cgal/branches/CGAL-3.6-branch/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h $ // $Id: Triangle_3_Segment_3_intersection.h 53496 2009-12-18 15:12:59Z stayeb $ // // // Author(s) : Laurent Rineau, Stephane Tayeb // // Note: This implementation is adapted from Triangle_3_Segment_3_do_intersect.h #ifndef CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H #define CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H #include <CGAL/kernel_basic.h> #include <CGAL/intersections.h> namespace CGAL { namespace internal { template <class K> typename K::Point_3 t3s3_intersection_coplanar_aux(const typename K::Point_3& p, const typename K::Point_3& q, const typename K::Point_3& a, const typename K::Point_3& b, const K& k) { // Returns the intersection point between segment [p,q] and [a,b] // // preconditions: // + p,q,a,b are coplanar typedef typename K::Point_3 Point_3; typedef typename K::Vector_3 Vector_3; typedef typename K::FT FT; typename K::Construct_vector_3 vector = k.construct_vector_3_object(); typename K::Construct_cross_product_vector_3 cross_product = k.construct_cross_product_vector_3_object(); typename K::Compute_scalar_product_3 scalar_product = k.compute_scalar_product_3_object(); typename K::Compute_squared_length_3 sq_length = k.compute_squared_length_3_object(); const Vector_3 pq = vector(p,q); const Vector_3 ab = vector(a,b); const Vector_3 pa = vector(p,a); const Vector_3 pa_ab = cross_product(pa,ab); const Vector_3 pq_ab = cross_product(pq,ab); const FT t = scalar_product(pa_ab,pq_ab) / sq_length(pq_ab); return ( p + t*pq ); } template <class K> Object t3s3_intersection_coplanar_aux(const typename K::Point_3& a, const typename K::Point_3& b, const typename K::Point_3& c, const typename K::Point_3& p, const typename K::Point_3& q, const bool negative_side, const K& k) { // This function is designed to clip pq into the triangle abc. // Point configuration should be as follows // // +p // | +b // | // +c | +a // | // +q // // We know that c is isolated on the negative side of pq, but we don't know // p position wrt [bc]&[ca] and q position wrt [bc]&[ca] typedef typename K::Point_3 Point_3; typename K::Coplanar_orientation_3 coplanar_orientation = k.coplanar_orientation_3_object(); typename K::Construct_segment_3 segment = k.construct_segment_3_object(); const Orientation bcq = coplanar_orientation(b,c,q); const Orientation cap = coplanar_orientation(c,a,p); if ( NEGATIVE == bcq || NEGATIVE == cap ) return Object(); else if ( COLLINEAR == bcq ) // q is inside [c,b], p is outside t (because of pqc) return make_object(q); else if ( COLLINEAR == cap ) // p is inside [c,a], q is outside t (because of pqc) return make_object(p); else // bcq == POSITIVE && cap == POSITIVE { // Here we know the intersection is not empty // Let's get the intersection points Point_3 p_side_end_point(p); if ( NEGATIVE == coplanar_orientation(b,c,p) ) { p_side_end_point = t3s3_intersection_coplanar_aux(p,q,b,c,k); } Point_3 q_side_end_point(q); if ( NEGATIVE == coplanar_orientation(c,a,q) ) { q_side_end_point = t3s3_intersection_coplanar_aux(p,q,c,a,k); } if ( negative_side ) return make_object(segment(p_side_end_point, q_side_end_point)); else return make_object(segment(q_side_end_point, p_side_end_point)); } } template <class K> Object t3s3_intersection_collinear_aux(const typename K::Point_3& a, const typename K::Point_3& b, const typename K::Point_3& p, const typename K::Point_3& q, const K& k) { // Builds resulting segment of intersection of [a,b] and [p,q] // Precondition: [a,b] and [p,q] have the same direction typename K::Construct_segment_3 segment = k.construct_segment_3_object(); typename K::Collinear_are_ordered_along_line_3 collinear_ordered = k.collinear_are_ordered_along_line_3_object(); typename K::Equal_3 equals = k.equal_3_object(); // possible orders: [p,a,b,q], [p,a,q,b], [a,p,b,q], [a,p,q,b] if ( collinear_ordered(p,a,q) ) { // p is before a if ( collinear_ordered(p,b,q) ) return make_object(segment(a,b)); else return equals(a,q)? make_object(a): make_object(segment(a,q)); } else { // p is after a if ( collinear_ordered(p,b,q) ) return equals(p,b)? make_object(p): make_object(segment(p,b)); else return make_object(segment(p,q)); } } template <class K> Object intersection_coplanar(const typename K::Triangle_3 &t, const typename K::Segment_3 &s, const K & k ) { CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ; CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ; typedef typename K::Point_3 Point_3; typename K::Construct_point_on_3 point_on = k.construct_point_on_3_object(); typename K::Construct_vertex_3 vertex_on = k.construct_vertex_3_object(); typename K::Coplanar_orientation_3 coplanar_orientation = k.coplanar_orientation_3_object(); typename K::Collinear_are_ordered_along_line_3 collinear_ordered = k.collinear_are_ordered_along_line_3_object(); typename K::Construct_line_3 line = k.construct_line_3_object(); typename K::Construct_segment_3 segment = k.construct_segment_3_object(); const Point_3 & p = point_on(s,0); const Point_3 & q = point_on(s,1); const Point_3 & A = vertex_on(t,0); const Point_3 & B = vertex_on(t,1); const Point_3 & C = vertex_on(t,2); int k0 = 0; int k1 = 1; int k2 = 2; // Determine the orientation of the triangle in the common plane if (coplanar_orientation(A,B,C) != POSITIVE) { // The triangle is not counterclockwise oriented // swap two vertices. std::swap(k1,k2); } const Point_3& a = vertex_on(t,k0); const Point_3& b = vertex_on(t,k1); const Point_3& c = vertex_on(t,k2); // Test whether the segment's supporting line intersects the // triangle in the common plane const Orientation pqa = coplanar_orientation(p,q,a); const Orientation pqb = coplanar_orientation(p,q,b); const Orientation pqc = coplanar_orientation(p,q,c); switch ( pqa ) { // ----------------------------------- // pqa POSITIVE // ----------------------------------- case POSITIVE: switch ( pqb ) { case POSITIVE: switch ( pqc ) { case POSITIVE: // the triangle lies in the positive halfspace // defined by the segment's supporting line. return Object(); case NEGATIVE: // c is isolated on the negative side return t3s3_intersection_coplanar_aux(a,b,c,p,q,true,k); case COLLINEAR: if ( collinear_ordered(p,c,q) ) // c is inside [p,q] return make_object(c); else return Object(); } case NEGATIVE: if ( POSITIVE == pqc ) // b is isolated on the negative side return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k); else // a is isolated on the positive side return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k); case COLLINEAR: switch ( pqc ) { case POSITIVE: if ( collinear_ordered(p,b,q) ) // b is inside [p,q] return make_object(b); else return Object(); case NEGATIVE: // a is isolated on the positive side return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k); case COLLINEAR: // b,c,p,q are aligned, [p,q]&[b,c] have the same direction return t3s3_intersection_collinear_aux(b,c,p,q,k); } default: // should not happen. CGAL_error(); return Object(); } // ----------------------------------- // pqa NEGATIVE // ----------------------------------- case NEGATIVE: switch ( pqb ) { case POSITIVE: if ( POSITIVE == pqc ) // a is isolated on the negative side return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k); else // b is isolated on the positive side return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k); case NEGATIVE: switch ( pqc ) { case POSITIVE: // c is isolated on the positive side return t3s3_intersection_coplanar_aux(a,b,c,q,p,false,k); case NEGATIVE: // the triangle lies in the negative halfspace // defined by the segment's supporting line. return Object(); case COLLINEAR: if ( collinear_ordered(p,c,q) ) // c is inside [p,q] return make_object(c); else return Object(); } case COLLINEAR: switch ( pqc ) { case POSITIVE: // a is isolated on the negative side return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k); case NEGATIVE: if ( collinear_ordered(p,b,q) ) // b is inside [p,q] return make_object(b); else return Object(); case COLLINEAR: // b,c,p,q are aligned, [p,q]&[c,b] have the same direction return t3s3_intersection_collinear_aux(c,b,p,q,k); } default: // should not happen. CGAL_error(); return Object(); } // ----------------------------------- // pqa COLLINEAR // ----------------------------------- case COLLINEAR: switch ( pqb ) { case POSITIVE: switch ( pqc ) { case POSITIVE: if ( collinear_ordered(p,a,q) ) // a is inside [p,q] return make_object(a); else return Object(); case NEGATIVE: // b is isolated on the positive side return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k); case COLLINEAR: // a,c,p,q are aligned, [p,q]&[c,a] have the same direction return t3s3_intersection_collinear_aux(c,a,p,q,k); } case NEGATIVE: switch ( pqc ) { case POSITIVE: // b is isolated on the negative side return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k); case NEGATIVE: if ( collinear_ordered(p,a,q) ) // a is inside [p,q] return make_object(a); else return Object(); case COLLINEAR: // a,c,p,q are aligned, [p,q]&[a,c] have the same direction return t3s3_intersection_collinear_aux(a,c,p,q,k); } case COLLINEAR: switch ( pqc ) { case POSITIVE: // a,b,p,q are aligned, [p,q]&[a,b] have the same direction return t3s3_intersection_collinear_aux(a,b,p,q,k); case NEGATIVE: // a,b,p,q are aligned, [p,q]&[b,a] have the same direction return t3s3_intersection_collinear_aux(b,a,p,q,k); case COLLINEAR: // case pqc == COLLINEAR is impossible since the triangle is // assumed to be non flat CGAL_error(); return Object(); } default: // should not happen. CGAL_error(); return Object(); } default:// should not happen. CGAL_error(); return Object(); } } template <class K> Object intersection(const typename K::Triangle_3 &t, const typename K::Segment_3 &s, const K & k) { CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ; CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ; typedef typename K::Point_3 Point_3; typename K::Construct_point_on_3 point_on = k.construct_point_on_3_object(); typename K::Construct_vertex_3 vertex_on = k.construct_vertex_3_object(); typename K::Orientation_3 orientation = k.orientation_3_object(); typename K::Intersect_3 intersection = k.intersect_3_object(); const Point_3 & a = vertex_on(t,0); const Point_3 & b = vertex_on(t,1); const Point_3 & c = vertex_on(t,2); const Point_3 & p = point_on(s,0); const Point_3 & q = point_on(s,1); const Orientation abcp = orientation(a,b,c,p); const Orientation abcq = orientation(a,b,c,q); switch ( abcp ) { case POSITIVE: switch ( abcq ) { case POSITIVE: // the segment lies in the positive open halfspaces defined by the // triangle's supporting plane return Object(); case NEGATIVE: // p sees the triangle in counterclockwise order if ( orientation(p,q,a,b) != POSITIVE && orientation(p,q,b,c) != POSITIVE && orientation(p,q,c,a) != POSITIVE ) { // The intersection should be a point Object obj = intersection(s.supporting_line(),t.supporting_plane()); if ( obj.is<typename K::Line_3>() ) return Object(); else return obj; } else return Object(); case COPLANAR: // q belongs to the triangle's supporting plane // p sees the triangle in counterclockwise order if ( orientation(p,q,a,b) != POSITIVE && orientation(p,q,b,c) != POSITIVE && orientation(p,q,c,a) != POSITIVE ) return make_object(q); else return Object(); default: // should not happen. CGAL_error(); return Object(); } case NEGATIVE: switch ( abcq ) { case POSITIVE: // q sees the triangle in counterclockwise order if ( orientation(q,p,a,b) != POSITIVE && orientation(q,p,b,c) != POSITIVE && orientation(q,p,c,a) != POSITIVE ) { Object obj = intersection(s.supporting_line(),t.supporting_plane()); if ( obj.is<typename K::Line_3>() ) return Object(); else return obj; } else return Object(); case NEGATIVE: // the segment lies in the negative open halfspaces defined by the // triangle's supporting plane return Object(); case COPLANAR: // q belongs to the triangle's supporting plane // p sees the triangle in clockwise order if ( orientation(q,p,a,b) != POSITIVE && orientation(q,p,b,c) != POSITIVE && orientation(q,p,c,a) != POSITIVE ) return make_object(q); else return Object(); default: // should not happen. CGAL_error(); return Object(); } case COPLANAR: // p belongs to the triangle's supporting plane switch ( abcq ) { case POSITIVE: // q sees the triangle in counterclockwise order if ( orientation(q,p,a,b) != POSITIVE && orientation(q,p,b,c) != POSITIVE && orientation(q,p,c,a) != POSITIVE ) return make_object(p); else return Object(); case NEGATIVE: // q sees the triangle in clockwise order if ( orientation(p,q,a,b) != POSITIVE && orientation(p,q,b,c) != POSITIVE && orientation(p,q,c,a) != POSITIVE ) return make_object(p); else return Object(); case COPLANAR: // the segment is coplanar with the triangle's supporting plane // we test whether the segment intersects the triangle in the common // supporting plane return intersection_coplanar(t,s,k); default: // should not happen. CGAL_error(); return Object(); } default: // should not happen. CGAL_error(); return Object(); } } template <class K> inline Object intersection(const typename K::Segment_3 &s, const typename K::Triangle_3 &t, const K & k) { return internal::intersection(t,s,k); } } // end namespace internal template <class K> inline Object intersection(const Triangle_3<K> &t, const Segment_3<K> &s) { return typename K::Intersect_3()(t, s); } template <class K> inline Object intersection(const Segment_3<K> &s, const Triangle_3<K> &t) { return typename K::Intersect_3()(t, s); } } // end namespace CGAL #endif // CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H
--- include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h (revision 57384) +++ include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h (working copy) @@ -154,6 +154,8 @@ typename K::Collinear_are_ordered_along_line_3 collinear_ordered = k.collinear_are_ordered_along_line_3_object(); + typename K::Equal_3 equals = k.equal_3_object(); + // possible orders: [p,a,b,q], [p,a,q,b], [a,p,b,q], [a,p,q,b] if ( collinear_ordered(p,a,q) ) { @@ -161,13 +163,17 @@ if ( collinear_ordered(p,b,q) ) return make_object(segment(a,b)); else - return make_object(segment(a,q)); + return equals(a,q)? + make_object(a): + make_object(segment(a,q)); } else { // p is after a if ( collinear_ordered(p,b,q) ) - return make_object(segment(p,b)); + return equals(p,b)? + make_object(p): + make_object(segment(p,b)); else return make_object(segment(p,q)); }
- [cgal-discuss] Bug in assign?, Bernhard Kornberger, 07/09/2010
- Re: [cgal-discuss] Bug in assign?, Sebastien Loriot (GeometryFactory), 07/12/2010
- Re: [cgal-discuss] Bug in assign?, Bernhard Kornberger, 07/13/2010
- Re: [cgal-discuss] Bug in assign?, Sebastien Loriot (GeometryFactory), 07/12/2010
Archive powered by MHonArc 2.6.16.