Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] CGAL "intersection" bug - URGENT

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] CGAL "intersection" bug - URGENT


Chronological Thread 
  • From: "Sebastien Loriot (GeometryFactory)" <>
  • To:
  • Subject: Re: [cgal-discuss] CGAL "intersection" bug - URGENT
  • Date: Fri, 06 Apr 2012 09:50:14 +0200

Hello,

Please stop posting messages with URGENT in the title, it has no
influence on the treatment. Moreover, I don't want that we end up
having URGENT in the title of each message of the list :)

For your problem, you cannot rely on a kernel with inexact
constructions to make a bug report. Here is what you should have used:

typedef CGAL::Exact_predicates_exact_constructions_kernel EKernel;
CGAL::Cartesian_converter<Kernel,EKernel> convert;
CGAL::Object object = CGAL::intersection(convert(segment_query), convert(triangle));
CGAL_assertion(object.empty());
For more details, please read:
http://www.cgal.org/FAQ.html#inexact_NT

But the bug was really here (because your points are aligned even with
floating point coordinates).

I joint the patch as well as the patched file
CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h

Thanks for the bug report,


Sebastien.

PS-SPAM: If you have URGENT questions that cannot wait the usual
answering delay of the list, note that GeometryFactory is selling
support licenses for a reasonable price. You can contact

to know more about these.



On 04/05/2012 11:44 PM, gupta61 wrote:
Hi,

I am reporting a problem with the "Segment-Triangle" intersection. If you
look at the code below I am trying to find a intersection between a Segment
and a Triangle. The answer should be that they do not intersect. When I use
"do_intersect" to find if they intersect, it gives me the correct result.
However when I ask "intersection" to tell me if it has an intersection, then
it gives me a segment as the intersection which is obviously wrong. Let me
know if I am missing something. I am mentioning the various things I have
tried.



I have tried with this problem with three versions of CGAL (3.8, 3.9,
4.0-beta1).

I also tried these kernels:

#include<CGAL/Exact_predicates_exact_constructions_kernel.h>
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;

#include<CGAL/Simple_cartesian.h>
typedef CGAL::Simple_cartesian<double> Kernel;

and got the same wrong results...



I am also mentioning the code which we used for this.


#include<cstdlib>
#include<string>
#include<cstdio>

#include<CGAL/Exact_predicates_inexact_constructions_kernel.h>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

//#include<CGAL/Exact_predicates_exact_constructions_kernel.h>
//typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;

//#include<CGAL/Simple_cartesian.h>
//typedef CGAL::Simple_cartesian<double> Kernel;


#include<CGAL/intersections.h>
#include<CGAL/Bbox_3.h>

typedef CGAL::Point_3<Kernel> CGALPoint3;
typedef CGAL::Segment_3<Kernel> CGALSegment3;
typedef CGAL::Triangle_3<Kernel> CGALTriangle3;

int main(int argc, char** argv) {

CGALSegment3 segment_query( CGALPoint3(0.125, 0, -0.125),
CGALPoint3(0.25, 0, -0.125) );

CGALTriangle3 triangle( CGALPoint3(0.2500001, 0, -0.125) /* vertex
6*/,
CGALPoint3(1.0278171, 0, -0.125) /* vertex 10*/,
CGALPoint3(1.0278171, 0, -0.250001) /* vertex 9*/ );

std::cout<< std::setw(12)<< std::setprecision( 15 )
<< "\nSegment query: "<< segment_query<< std::endl;
std::cout<< std::setw(12)<< std::setprecision( 15 )
<< "\nTriangle: "<< triangle<< std::endl;

bool do_intersect = CGAL::do_intersect(segment_query, triangle);
std::cout<< "\nCGAL::do_intersect (0/1) = "<< do_intersect<< std::endl;


// Compute actual intersection(s)
CGAL::Object object = CGAL::intersection(segment_query, triangle);

// check if it is a point
const CGALPoint3* p_point=0;
const CGALSegment3* p_segm=0;
if( (p_point = CGAL::object_cast<CGALPoint3>(&object)) ) {
std::cout<< "\nEncountered intersection object is a point"<<
std::endl;
std::cout<< std::setw(12)<< std::setprecision( 15 )<< (*p_point)<<
std::endl;
}
else if ( (p_segm = CGAL::object_cast<CGALSegment3>(&object)) ) {
// Check if it is a segment otherwise error out

std::cout<< "\nEncountered intersection object is a segment"<<
std::endl;
std::cout<< std::setw(12)<< std::setprecision( 15 )<< (*p_segm)<<
std::endl;
}
else {
std::cerr<< "\nInvalid object returned by aaa_bb tree"<< std::endl;
}

return 0;
}


We got the following result which is obviously wrong as explained before.

Segment query: 0.125 0 -0.125 0.25 0 -0.125

Triangle: 0.2500001 0 -0.125 1.0278171 0 -0.125 1.0278171 0 -0.250001

CGAL::do_intersect (0/1) = 0

Encountered intersection object is a segment
0.125 0 -0.125 0.25 0 -0.125


Can you explain why I am getting this result or if you can confirm if it is
a bug ?

Thanks,
Piyush Gupta
UIUC

-----
Piyush Gupta
UIUC
--
View this message in context:
http://cgal-discuss.949826.n4.nabble.com/CGAL-intersection-bug-URGENT-tp4536168p4536168.html
Sent from the cgal-discuss mailing list archive at Nabble.com.


---
branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h
2012-04-05 10:56:28 UTC (rev 68386)
+++
branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h
2012-04-05 11:57:58 UTC (rev 68387)
@@ -156,26 +156,36 @@

typename K::Equal_3 equals = k.equal_3_object();

- // possible orders: [p,a,b,q], [p,a,q,b], [a,p,b,q], [a,p,q,b]
- if ( collinear_ordered(p,a,q) )
+ // possible orders: [p,a,b,q], [p,a,q,b], [p,q,a,b], [a,p,b,q], [a,p,q,b],
[a,b,p,q]
+ if ( collinear_ordered(p,a,b) )
{
// p is before a
- if ( collinear_ordered(p,b,q) )
- return make_object(segment(a,b));
- else
- return equals(a,q)?
- make_object(a):
- make_object(segment(a,q));
+ //possible orders: [p,a,b,q], [p,a,q,b], [p,q,a,b]
+ if ( collinear_ordered(a,b,q) )
+ return make_object(segment(a,b)); //[p,a,b,q]
+ else{
+ if ( collinear_ordered(q,a,b) )
+ return equals(a,q)? //[p,q,a,b]
+ make_object(a):
+ Object();
+ return make_object(segment(a,q)); //[p,a,q,b]
+ }
}
else
{
// p is after a
+ //possible orders: [a,p,b,q], [a,p,q,b], [a,b,p,q]
if ( collinear_ordered(p,b,q) )
- return equals(p,b)?
+ return equals(p,b)? // [a,p,b,q]
make_object(p):
make_object(segment(p,b));
- else
- return make_object(segment(p,q));
+ else{
+ if ( collinear_ordered(a,b,p) )
+ return equals(p,b)? // [a,b,p,q]
+ make_object(p):
+ Object();
+ return make_object(segment(p,q)); // [a,p,q,b]
+ }
}
}
// Copyright (c) 2009  GeometryFactory (France), INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/next/Intersections_3/include/CGAL/internal/Intersections_3/Triangle_3_Segment_3_intersection.h $
// $Id: Triangle_3_Segment_3_intersection.h 67093 2012-01-13 11:22:39Z lrineau $
//
//
// Author(s)     :  Laurent Rineau, Stephane Tayeb
//
// Note: This implementation is adapted from Triangle_3_Segment_3_do_intersect.h

#ifndef CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H
#define CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H

#include <CGAL/kernel_basic.h>
#include <CGAL/intersections.h>

namespace CGAL {
namespace internal {

template <class K>
typename K::Point_3
t3s3_intersection_coplanar_aux(const typename K::Point_3& p,
                               const typename K::Point_3& q,
                               const typename K::Point_3& a,
                               const typename K::Point_3& b,
                               const K& k)
{
  // Returns the intersection point between segment [p,q] and [a,b]
  //
  // preconditions:
  //   + p,q,a,b are coplanar

  typedef typename K::Point_3 Point_3;
  typedef typename K::Vector_3 Vector_3;
  typedef typename K::FT FT;

  typename K::Construct_vector_3 vector =
    k.construct_vector_3_object();

  typename K::Construct_cross_product_vector_3 cross_product =
    k.construct_cross_product_vector_3_object();

  typename K::Compute_scalar_product_3 scalar_product =
    k.compute_scalar_product_3_object();

  typename K::Compute_squared_length_3 sq_length =
    k.compute_squared_length_3_object();

  const Vector_3 pq = vector(p,q);
  const Vector_3 ab = vector(a,b);
  const Vector_3 pa = vector(p,a);

  const Vector_3 pa_ab = cross_product(pa,ab);
  const Vector_3 pq_ab = cross_product(pq,ab);

  const FT t = scalar_product(pa_ab,pq_ab) / sq_length(pq_ab);

  return ( p + t*pq );
}


template <class K>
Object
t3s3_intersection_coplanar_aux(const typename K::Point_3& a,
                               const typename K::Point_3& b,
                               const typename K::Point_3& c,
                               const typename K::Point_3& p,
                               const typename K::Point_3& q,
                               const bool negative_side,
                               const K& k)
{
  // This function is designed to clip pq into the triangle abc.
  // Point configuration should be as follows
  //
  //     +p
  //     |    +b
  //     |
  //  +c |       +a
  //     |
  //     +q
  //
  // We know that c is isolated on the negative side of pq, but we don't know
  // p position wrt [bc]&[ca] and q position wrt [bc]&[ca]

  typedef typename K::Point_3 Point_3;

  typename K::Coplanar_orientation_3 coplanar_orientation =
    k.coplanar_orientation_3_object();

  typename K::Construct_segment_3 segment =
    k.construct_segment_3_object();

  const Orientation bcq = coplanar_orientation(b,c,q);
  const Orientation cap = coplanar_orientation(c,a,p);

  if ( NEGATIVE == bcq || NEGATIVE == cap )
    return Object();
  else if ( COLLINEAR == bcq )
    // q is inside [c,b], p is outside t (because of pqc)
    return make_object(q);
  else if ( COLLINEAR == cap )
    // p is inside [c,a], q is outside t (because of pqc)
    return make_object(p);
  else // bcq == POSITIVE && cap == POSITIVE
  {
    // Here we know the intersection is not empty
    // Let's get the intersection points
    Point_3 p_side_end_point(p);
    if ( NEGATIVE == coplanar_orientation(b,c,p) )
    {
      p_side_end_point = t3s3_intersection_coplanar_aux(p,q,b,c,k);
    }

    Point_3 q_side_end_point(q);
    if ( NEGATIVE == coplanar_orientation(c,a,q) )
    {
      q_side_end_point = t3s3_intersection_coplanar_aux(p,q,c,a,k);
    }

    if ( negative_side )
      return make_object(segment(p_side_end_point, q_side_end_point));
    else
      return make_object(segment(q_side_end_point, p_side_end_point));
  }
}


template <class K>
Object
t3s3_intersection_collinear_aux(const typename K::Point_3& a,
                               const typename K::Point_3& b,
                               const typename K::Point_3& p,
                               const typename K::Point_3& q,
                               const K& k)
{
  // Builds resulting segment of intersection of [a,b] and [p,q]
  // Precondition: [a,b] and [p,q] have the same direction

  typename K::Construct_segment_3 segment =
    k.construct_segment_3_object();

  typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
    k.collinear_are_ordered_along_line_3_object();

  typename K::Equal_3 equals = k.equal_3_object();
 
  // possible orders: [p,a,b,q], [p,a,q,b], [p,q,a,b], [a,p,b,q], [a,p,q,b], [a,b,p,q]
  if ( collinear_ordered(p,a,b) )
  {
    // p is before a
    //possible orders: [p,a,b,q], [p,a,q,b], [p,q,a,b]
    if ( collinear_ordered(a,b,q) )
      return make_object(segment(a,b)); //[p,a,b,q]
    else{
      if ( collinear_ordered(q,a,b) )
        return equals(a,q)? //[p,q,a,b]
            make_object(a):
            Object(); 
      return make_object(segment(a,q)); //[p,a,q,b]
    }
  }
  else
  {
    // p is after a
    //possible orders: [a,p,b,q], [a,p,q,b], [a,b,p,q]
    if ( collinear_ordered(p,b,q) )
      return equals(p,b)? // [a,p,b,q]
             make_object(p):
             make_object(segment(p,b));
    else{
      if ( collinear_ordered(a,b,p) )
        return equals(p,b)? // [a,b,p,q]
                make_object(p):
                Object();
      return make_object(segment(p,q)); // [a,p,q,b]
    }
  }
}


template <class K>
Object
intersection_coplanar(const typename K::Triangle_3 &t,
                      const typename K::Segment_3  &s,
                      const K & k )
{

  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;

  typedef typename K::Point_3 Point_3;


  typename K::Construct_point_on_3 point_on =
    k.construct_point_on_3_object();

  typename K::Construct_vertex_3 vertex_on =
    k.construct_vertex_3_object();

  typename K::Coplanar_orientation_3 coplanar_orientation =
    k.coplanar_orientation_3_object();

  typename K::Collinear_are_ordered_along_line_3 collinear_ordered =
    k.collinear_are_ordered_along_line_3_object();

  const Point_3 & p = point_on(s,0);
  const Point_3 & q = point_on(s,1);

  const Point_3 & A = vertex_on(t,0);
  const Point_3 & B = vertex_on(t,1);
  const Point_3 & C = vertex_on(t,2);

  int k0 = 0;
  int k1 = 1;
  int k2 = 2;

  // Determine the orientation of the triangle in the common plane
  if (coplanar_orientation(A,B,C) != POSITIVE)
  {
    // The triangle is not counterclockwise oriented
    // swap two vertices.
    std::swap(k1,k2);
  }

  const Point_3& a = vertex_on(t,k0);
  const Point_3& b = vertex_on(t,k1);
  const Point_3& c = vertex_on(t,k2);

  // Test whether the segment's supporting line intersects the
  // triangle in the common plane
  const Orientation pqa = coplanar_orientation(p,q,a);
  const Orientation pqb = coplanar_orientation(p,q,b);
  const Orientation pqc = coplanar_orientation(p,q,c);

  switch ( pqa ) {
    // -----------------------------------
    // pqa POSITIVE
    // -----------------------------------
    case POSITIVE:
      switch ( pqb ) {
        case POSITIVE:
          switch ( pqc ) {
            case POSITIVE:
              // the triangle lies in the positive halfspace
              // defined by the segment's supporting line.
              return Object();
            case NEGATIVE:
              // c is isolated on the negative side
              return t3s3_intersection_coplanar_aux(a,b,c,p,q,true,k);
            case COLLINEAR:
              if ( collinear_ordered(p,c,q) ) // c is inside [p,q]
                return make_object(c);
              else
                return Object();
          }

        case NEGATIVE:
          if ( POSITIVE == pqc )
            // b is isolated on the negative side
            return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k);
          else
            // a is isolated on the positive side
            return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k);

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              if ( collinear_ordered(p,b,q) ) // b is inside [p,q]
                return make_object(b);
              else
                return Object();
            case NEGATIVE:
              // a is isolated on the positive side
              return t3s3_intersection_coplanar_aux(b,c,a,q,p,false,k);
            case COLLINEAR:
              // b,c,p,q are aligned, [p,q]&[b,c] have the same direction
              return t3s3_intersection_collinear_aux(b,c,p,q,k);
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    // -----------------------------------
    // pqa NEGATIVE
    // -----------------------------------
    case NEGATIVE:
      switch ( pqb ) {
        case POSITIVE:
          if ( POSITIVE == pqc )
            // a is isolated on the negative side
            return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k);
          else
            // b is isolated on the positive side
            return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k);

        case NEGATIVE:
          switch ( pqc ) {
            case POSITIVE:
              // c is isolated on the positive side
              return t3s3_intersection_coplanar_aux(a,b,c,q,p,false,k);
            case NEGATIVE:
              // the triangle lies in the negative halfspace
              // defined by the segment's supporting line.
              return Object();
            case COLLINEAR:
              if ( collinear_ordered(p,c,q) ) // c is inside [p,q]
                return make_object(c);
              else
                return Object();
          }

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              // a is isolated on the negative side
              return t3s3_intersection_coplanar_aux(b,c,a,p,q,true,k);
            case NEGATIVE:
              if ( collinear_ordered(p,b,q) ) // b is inside [p,q]
                return make_object(b);
              else
                return Object();
            case COLLINEAR:
              // b,c,p,q are aligned, [p,q]&[c,b] have the same direction
              return t3s3_intersection_collinear_aux(c,b,p,q,k);
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    // -----------------------------------
    // pqa COLLINEAR
    // -----------------------------------
    case COLLINEAR:
      switch ( pqb ) {
        case POSITIVE:
          switch ( pqc ) {
            case POSITIVE:
              if ( collinear_ordered(p,a,q) ) // a is inside [p,q]
                return make_object(a);
              else
                return Object();
            case NEGATIVE:
              // b is isolated on the positive side
              return t3s3_intersection_coplanar_aux(c,a,b,q,p,false,k);
            case COLLINEAR:
              // a,c,p,q are aligned, [p,q]&[c,a] have the same direction
              return t3s3_intersection_collinear_aux(c,a,p,q,k);
          }

        case NEGATIVE:
          switch ( pqc ) {
            case POSITIVE:
              // b is isolated on the negative side
              return t3s3_intersection_coplanar_aux(c,a,b,p,q,true,k);
            case NEGATIVE:
              if ( collinear_ordered(p,a,q) ) // a is inside [p,q]
                return make_object(a);
              else
                return Object();
            case COLLINEAR:
              // a,c,p,q are aligned, [p,q]&[a,c] have the same direction
              return t3s3_intersection_collinear_aux(a,c,p,q,k);
          }

        case COLLINEAR:
          switch ( pqc ) {
            case POSITIVE:
              // a,b,p,q are aligned, [p,q]&[a,b] have the same direction
              return t3s3_intersection_collinear_aux(a,b,p,q,k);
            case NEGATIVE:
              // a,b,p,q are aligned, [p,q]&[b,a] have the same direction
              return t3s3_intersection_collinear_aux(b,a,p,q,k);
            case COLLINEAR:
              // case pqc == COLLINEAR is impossible since the triangle is
              // assumed to be non flat
              CGAL_error();
              return Object();
          }

        default: // should not happen.
          CGAL_error();
          return Object();
      }

    default:// should not happen.
      CGAL_error();
      return Object();
  }
}


template <class K>
Object
intersection(const typename K::Triangle_3 &t,
             const typename K::Segment_3  &s,
             const K & k)
{
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(t) ) ;
  CGAL_kernel_precondition( ! k.is_degenerate_3_object()(s) ) ;

  typedef typename K::Point_3 Point_3;

  typename K::Construct_point_on_3 point_on =
    k.construct_point_on_3_object();

  typename K::Construct_vertex_3 vertex_on =
    k.construct_vertex_3_object();

  typename K::Orientation_3 orientation =
    k.orientation_3_object();

  typename K::Intersect_3 intersection =
    k.intersect_3_object();

  const Point_3 & a = vertex_on(t,0);
  const Point_3 & b = vertex_on(t,1);
  const Point_3 & c = vertex_on(t,2);
  const Point_3 & p = point_on(s,0);
  const Point_3 & q = point_on(s,1);

  const Orientation abcp = orientation(a,b,c,p);
  const Orientation abcq = orientation(a,b,c,q);

  switch ( abcp ) {
    case POSITIVE:
      switch ( abcq ) {
        case POSITIVE:
          // the segment lies in the positive open halfspaces defined by the
          // triangle's supporting plane
          return Object();

        case NEGATIVE:
          // p sees the triangle in counterclockwise order
          if ( orientation(p,q,a,b) != POSITIVE
              && orientation(p,q,b,c) != POSITIVE
              && orientation(p,q,c,a) != POSITIVE )
          {
            // The intersection should be a point
            Object obj = intersection(s.supporting_line(),t.supporting_plane());
            if ( obj.is<typename K::Line_3>() )
              return Object();
            else
              return obj;
          }
          else
            return Object();

        case COPLANAR:
          // q belongs to the triangle's supporting plane
          // p sees the triangle in counterclockwise order
          if ( orientation(p,q,a,b) != POSITIVE
              && orientation(p,q,b,c) != POSITIVE
              && orientation(p,q,c,a) != POSITIVE )
            return make_object(q);
          else
            return Object();

        default: // should not happen.
          CGAL_error();
          return Object();
      }
    case NEGATIVE:
      switch ( abcq ) {
        case POSITIVE:
          // q sees the triangle in counterclockwise order
          if ( orientation(q,p,a,b) != POSITIVE
            && orientation(q,p,b,c) != POSITIVE
            && orientation(q,p,c,a) != POSITIVE )
          {
            Object obj = intersection(s.supporting_line(),t.supporting_plane());
            if ( obj.is<typename K::Line_3>() )
              return Object();
            else
              return obj;
          }
          else
            return Object();

        case NEGATIVE:
          // the segment lies in the negative open halfspaces defined by the
          // triangle's supporting plane
          return Object();

        case COPLANAR:
          // q belongs to the triangle's supporting plane
          // p sees the triangle in clockwise order
          if ( orientation(q,p,a,b) != POSITIVE
              && orientation(q,p,b,c) != POSITIVE
              && orientation(q,p,c,a) != POSITIVE )
            return make_object(q);
          else
            return Object();

        default: // should not happen.
          CGAL_error();
          return Object();
      }
    case COPLANAR: // p belongs to the triangle's supporting plane
      switch ( abcq ) {
        case POSITIVE:
          // q sees the triangle in counterclockwise order
          if ( orientation(q,p,a,b) != POSITIVE
              && orientation(q,p,b,c) != POSITIVE
              && orientation(q,p,c,a) != POSITIVE )
            return make_object(p);
          else
            return Object();

        case NEGATIVE:
          // q sees the triangle in clockwise order
          if ( orientation(p,q,a,b) != POSITIVE
              && orientation(p,q,b,c) != POSITIVE
              && orientation(p,q,c,a) != POSITIVE )
            return make_object(p);
          else
            return Object();

        case COPLANAR:
          // the segment is coplanar with the triangle's supporting plane
          // we test whether the segment intersects the triangle in the common
          // supporting plane
          return intersection_coplanar(t,s,k);

        default: // should not happen.
          CGAL_error();
          return Object();
      }
    default: // should not happen.
      CGAL_error();
      return Object();
  }
}

template <class K>
inline
Object
intersection(const typename K::Segment_3  &s,
             const typename K::Triangle_3 &t,
             const K & k)
{
  return internal::intersection(t,s,k);
}


} // end namespace internal

template <class K>
inline
Object
intersection(const Triangle_3<K> &t, const Segment_3<K> &s)
{
  return typename K::Intersect_3()(t, s);
}

template <class K>
inline
Object
intersection(const Segment_3<K> &s, const Triangle_3<K> &t)
{
  return typename K::Intersect_3()(t, s);
}

} // end namespace CGAL

#endif // CGAL_INTERNAL_INTERSECTIONS_3_TRIANGLE_3_SEGMENT_3_INTERSECTION_H



Archive powered by MHonArc 2.6.16.

Top of Page