Subject: CGAL users discussion list
List archive
- From: Thomas Evangelidis <>
- To:
- Subject: [cgal-discuss] description of shape in a vector form
- Date: Tue, 30 May 2017 13:17:20 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-phdr: 9a23:Gff5lx/eKwJoF/9uRHKM819IXTAuvvDOBiVQ1KB41uwcTK2v8tzYMVDF4r011RmSDNudtq0My7KP9fuxBipYudfJmUtBWaIPfidGs/lepxYnDs+BBB+zB9/RRAt+Iv5/UkR49WqwK0lfFZW2TVTTpnqv8WxaQU2nZkJ6KevvB4Hdkdm82fys9J3PeQVIgye2ba9vIBmsowjcssgbjZFiJ6sz1xDFpmdEd/lMyW5mIV+enQzw6tus8JJm7i9dp+8v+8lcXKr1eKg1UaZWADM6PW4r+cblrwPDTQyB5nsdVmUZjB9FCBXb4R/5Q5n8rDL0uvJy1yeGM8L2S6s0WSm54KdwVBDokiYHOCUn/2zRl8d9kbhUoBOlpxx43o7UfISYP+dwc6/BYd8XQ3dKU8BMXCJDH4y8dZMCAeoPM+hbsofzuUcBoACkCgWwHu7i0CNEimP00KA8zu8vERvG3AslH98WrnrUrNL1NKIIXuCu0aLGwivDYOlQ2Tfy9ofIdhEhruyNXbJrbMHczlUvGB3bjlqKr4zlMD2Y2/8Cs2ie9eVgVOavh3Q7pAF2pzii38EhgZTKiIIN0l3I6zl1zYIvKdC7SEN3e8CoHIZQui2AOIZ7QcUvSHxytikg0L0Jo5u7cTAKyJs5wx7fbOSKc42S7RLiUOadODN4hHx5dL6miRa//kutxvfzVsmz11ZKoS5FncfWun8R0BzT79CLSvp7/ki/xTaCzx7f5v1ALEwulqfWK4QtzqAtmpcTq0jOESz7lF3zjKCMd0Uk/uao6/7gYrXjvpKcK5F7ih/kPaQolcyyD/81MgcLX2eB+OS80Kfv8lH+QLVPlvE2iLXWsIjGJcQHoa60GxNa0ok55Ba7FjupzdUYnWIbI1JYYxKHlJPkO0rOIfD9FfewmU6gkDZtx/DcP73uGI/BLnbZkOSpQbEo4EFVzE8/zMtU+olPIrAHOvP6HEHr5/LCCRpsDwyzxu/8QPhj34URVGaODq6CePfOvEGB4O10C+aJbY4R/j36Lq52tLbVkXYllApFLuGS1pwNZSXgEw==
Greetings everybody,
I am new to CGAL and I am looking for some algorithms to help me in my problem, which is to project shape information about an object to 1 dimension. Specifically I am training a neural network to be able to identify objects with similar shape as the ones in the training set. The objects in my case are molecules for which the positions, masses and radii of the atoms are known. So far I have used information about the inter-atomic distances. The shape of the molecule is characterized by the distributions of atomic distances to four strategic reference locations. In turn, each of these distributions is described through its first three moments. In this way, each molecule has associated a vector of 12 shape descriptors. E.g.
shape = [5.263145206201491, 2.374050283937628, 0.5667128412399703, -0.9294169868091768, 5.248610806623028, 2.540858433874688, 0.6060854720036649, -0.8149532304046945, 10.186033275946016, 5.224912272773887, -0.5637327938909833, -1.1097296046204561]
However, a 12-element feature vector is too small to describe accurately the molecular shape. I tried to add more reference location and consequently more atomic distances but I noticed no gains in accuracy. Is there any algorithm implemented in CGAL that can express the molecular shape in a feature vector form? Please point me to references if you know.
I thank you in advance for any advice.
Thomas
- [cgal-discuss] description of shape in a vector form, Thomas Evangelidis, 05/30/2017
Archive powered by MHonArc 2.6.18.