Subject: CGAL users discussion list
List archive
- From: Mael <>
- To:
- Subject: Re: [cgal-discuss] Offsets in periodic triangulations
- Date: Fri, 20 Jul 2018 10:42:06 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=None ; spf=None
- Ironport-phdr: 9a23:SHyOEhGQ0hQv+apoY1vAVJ1GYnF86YWxBRYc798ds5kLTJ7zpMywAkXT6L1XgUPTWs2DsrQY07SQ6/iocFdDyK7JiGoFfp1IWk1NouQttCtkPvS4D1bmJuXhdS0wEZcKflZk+3amLRodQ56mNBXdrXKo8DEdBAj0OxZrKeTpAI7SiNm82/yv95HJbAhEmDuwbaluIBmqsA7cqtQYjYx+J6gr1xDHuGFIe+NYxWNpIVKcgRPx7dqu8ZBg7ipdpesv+9ZPXqvmcas4S6dYDCk9PGAu+MLrrxjDQhCR6XYaT24bjwBHAwnB7BH9Q5fxri73vfdz1SWGIcH7S60/VDK/5KlpVRDokj8KOSMn/mHZisJ+j6xVrxyuqBN934HZe5uaOOZkc67HYd8XS2hMU8BMXCJBGIO8aI4PAvIGM+lCsYb9o0YFoBy7BQa2GuzvziVEhmXx3a0n3OUuDwXG0BYkH90Uq3vbt8v6ObwdUe+ry6nIyCvMb+9M2Tb95ojHaAwuoe2LXbJqccvd01UgFwTAjliJr4HuIj2b1uMIs2eB7upgU/qihHIoqw5rpjij3MAsipPGho8T11vK9j15zZ46KNC5UkJ3fMKoHZtKuyyUNoZ6WN4uTmN2tCoizrAKpYS3cSsLxZg9xRPTdeaLf5WJ7x/sUuuaPC12i2h/eL2lgha/6UigxfP4VsmzyFtHoDBJktzLtnwQ1RHe6NKLSv5n8Ueg3TaDzgfT6vxYIUwukqrbNZ4hzqQ2lpUNrUTPBi72mEPog6+Kbkgp9eml5/76brn6ppKQLYF5hwDkPqgzmMGzH/w0Mg0UUGia/eS82qfj/Ur8QLhSi/05iLfWsJTAKcQBoa65HgBU3Zgn6xqlCzepys8XkmIZI19edxKIkY/pO1TQL/DkF/e+g1qsny13yPDaOb3hGJXMImLfn7fmeLZx81RcxxYrzdBD+5JUDakML+78WkDrsNzUFwI2Mw2vw+n7FdV9zZgeVHmUAq6ZNaPSqUWH6vguI+mKfo8VuSzyJ+Ir5/703jcFngoWcqCtmJcWc3ulBe9OIkODYHOqjM1SP30Nu18bReHuwAmHWDNXIWy1QrIx4nc/AYisAK/MS4eojaCbzSmyFYFRfHEAAVeJRyS7P76YUusBPXrBavRqlSYJAOD4Gt0RkCq2vQq/8IJJa+/d+ykWr5XmjoEn6ODUkBwu7y16Bs+B1HucCWpzmzFQHmNk7OVEuUV4j2y7/+1gmfUCTI5c6vRMXxsgJJDVxPB9EcG0UQXELI/QFQSWB+6+CDR0deofht8DZ0EnRYf5yBXEhnX1RboclrjOA4EotKXC3z73Ktovk3s=
Hello, An illustration of the offsets is given this figure in the Periodic_3_triangulation_3 documentation. The offset vector (or just simply offset) expresses a translation: a periodic domain is an axis-aligned cuboid that by definition repeats itself in the x, y and z directions and thus forms a tiling of the space. If we arbitrarily choose a tile and name it the main tile, we can number all the other tiles via 3 numbers, the amount of steps we have to do in the x, y, and z direction to reach that tile from the main tile. That's the offset. What is important to understand is that points of a periodic
triangulation all live in the same cube (the one with offset
(0,0,0), also known as fundamental or canonical
domain). Offsets are then used to indicate relative positions
within an element of the periodic triangulation. For example, in 3D and using the unit cube as fundamental domain, the cell composed of the points: (0.7, 0.9, 1.1) is going to be represented as (0.7, 0.9, 0.1) with offset (0,0,1) Best, Mael On 20/07/2018 01:42, GAD FLY wrote:
Hi everyone!
As a beginner I
got stuck when reading the documentation on the periodic
triangulations!
My question is
about the "Offset" vector, the documentation says "It represents the
number of periods a representative in the original domain
must be translated in x- and y-direction".
Could someone explain this vector in an example maybe?
I
wanted to visualize my periodic triangulation structure, but I
do not know how to deal with the edges between an original
point and a periodic copy.
Thanks,
James
|
- [cgal-discuss] Offsets in periodic triangulations, GAD FLY, 07/20/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, Mael, 07/20/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, GAD FLY, 07/24/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, GAD FLY, 07/24/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, Mael, 07/25/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, GAD FLY, 07/24/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, GAD FLY, 07/24/2018
- Re: [cgal-discuss] Offsets in periodic triangulations, Mael, 07/20/2018
Archive powered by MHonArc 2.6.18.