Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Delaunay triangulations of the sphere

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Delaunay triangulations of the sphere


Chronological Thread 
  • From: Mael Rouxel-Labbé <>
  • To:
  • Subject: Re: [cgal-discuss] Delaunay triangulations of the sphere
  • Date: Tue, 15 Sep 2020 10:11:42 +0200
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=None ; spf=None
  • Ironport-phdr: 9a23:/w1h0h/2hcFFov9uRHKM819IXTAuvvDOBiVQ1KB+0uIXIJqq85mqBkHD//Il1AaPAdyFrase16GG6ujJYi8p2d65qncMcZhBBVcuqP49uEgeOvODElDxN/XwbiY3T4xoXV5h+GynYwAOQJ6tL1LdrWev4jEMBx7xKRR6JvjvGo7Vks+7y/2+94fcbglVhTexe65+IAu5oAnetcQanJZpJ7osxBfOvnZGYfldy3lyJVKUkRb858Ow84Bm/i9Npf8v9NNOXLvjcaggQrNWEDopM2Yu5M32rhbDVheA5mEdUmoNjBVFBRXO4QzgUZfwtiv6sfd92DWfMMbrQ704RSiu4qF2QxLulSwJNSM28HvPh8JtkqxbrhKvqR9xzYHab46aNuZxcKzGcNMGRmdMRNpdWzBPD46+aYYEEuoPPfxfr4n4v1YAqgGxCheoBOz31jFIgWL23KIk3OQlCA3I2hYvEMkVv3POsd74M6ISXvqrw6nM1znDdfRW2Sry6YfWdhAtu/WMUqhrfsXK10YiDAzFgUuXqYzgITyVyv4NsmiV7+V6Se2vl2knqxtxozS12sgsjYzJi5sTx1vZ+ip33Jw7KsekSE5nf9GkCp1QujmVOoZqTc0vTG5ltSYkxrMIp5O2fTUGxZskyhDfb/GKcoaG7BzsWeiRPTp1im5odayjixi87EStxOLyWtep3VtWqCdOj9fCtncI1xPJ68iHTONw/kig2TaT1wDT9/pLLVoomqrcLp4sxKM7mJkLsUnbESL7mV/6gLKKekgk4OSl6/jrbq/oq5OCL4N5iR/yPr4wlsGwAuk0KAcDUmeB9eii27Dv4VX1TKlQgvEqiKXVrIrWKdgdq6WkHQJV1psj6w2jDzi4ytQWgHgHLVNbdx+fk4TkPUzFLuriAvelmVuslS9mx/DYMb3lBZXANnrOnK3kfbZ66kNRzBA/zdVF6JJVDrENOfXzWlLttNDCCR85LQy0z/zhCNpjyoMSQWOPAqmHP6POqVKF6eMiL/ORaIMJuDvxMfgo6+L0gXI3h1MRZayp0oEWaHC8EPRmOUKZYX/0j9cEC2gFoA4+QPbwiF2FTD5SaGi9X6Ym6jE/Eo2pFpzMSZ62jbyOwii7GZhWaX5aClCWEXboeZ+LVOsQaCKVOM9gkiYIWqSmS48kzR2urhP1y6J7LurI/S0VrY7s1Ndv6O3XjB096D10D9+B3GGQVGF0hXgFRyQ23aB6uUxy0E2P0al+g/xCFNxc/elFUgkgNZLEyux6DM39VRzZc9eSTVamXs2mDSg2TtIs398Ce0Z9FMumjhDExyeqG7sVmKaLBZMq6KLR3Xz8K9tnx3bGzqYtlV4mQtVPNWG8gK5w6RTTC5bIk0WfiamqabwR0DLX+Guf12aCoFtUXBJoXaXfQX8fflfWrcj+5k7aU7CuBq4oMg9YxcGfK6tKccHmjUhdRPf4I9neYmSxm32xBRmS3L+MYpDqKC0h23DWB0EA1gwS5n2bLhMWByG7omuYAiY9O0joZhbJ+OR6n0m8U185y0SuZkdrVvLh/xcYgbqGTO4D07ZCvC4roThcE1u62t/KEcuOrgF9e79NJ9g65QEUhiriqwVhM8n4fOhZjVkEflEv5h+851BMEoxF1PMSgjYy1gMocPCX3VREei+CzJ75MaHQMHi09xeqOfaPiwPule2O86JK08wW7lDqvQWnDE0nqSw13NRS1naA/ITEBQEOVojgFE0w8koi/uyIUmwG/4rRkEZUH+y0vzvFgY97W60gzUjxOdJWMafBExLuVcoEB46oJfB4w1U=

Note that the branch is not guaranteed to be fully functional / documented / optimized yet. If you run into issues, please report them and I will look into it

Best,
Mael

On 15/09/2020 10:00, "Sebastien Loriot (GeometryFactory)" ( via cgal-discuss Mailing List) wrote:
Dear Marc,

it's on its way (API is currently under review and subject to change):

https://github.com/CGAL/cgal/pull/4421

There is nothing on the 3-sphere.

Best regards,

Sebastien.

On 9/15/20 9:47 AM, Marc Alexa ( via cgal-discuss Mailing List) wrote:
Dear all,

I am interested in CGAL implementations for computing the Delaunay triangulation of points sets on the 2- and 3-sphere. My current way is to compute the Delaunay triangulations of the points in R^3 resp. R^4 and then restrict to the simplices connected to the infinite vertex.

This paper

Manuel Caroli, Pedro M. M. de Castro, Sébastien Loriot, Olivier Rouiller, Monique Teillaud, and Camille Wormser. Robust and Efficient Delaunay Triangulations of Points on or Close to a Sphere. In 9th International Symposium on Experimental Algorithms, volume 6049 of Lecture Notes in Computer Science, pages 462-473, 2010.

explains how to do better than that.

I am wondering if the authors are willing to share their implementation. And in particular, if there is an extension to tetrahedralizations of the 3-sphere.

Thanks!
-Marc







Archive powered by MHonArc 2.6.19+.

Top of Page