Skip to Content.
Sympa Menu

cgal-discuss - [cgal-discuss] Computing Bezier curves on surfaces

Subject: CGAL users discussion list

List archive

[cgal-discuss] Computing Bezier curves on surfaces


Chronological Thread 
  • From: Calvin Lim <>
  • To: "" <>
  • Subject: [cgal-discuss] Computing Bezier curves on surfaces
  • Date: Wed, 8 Jun 2022 09:28:06 +0000
  • Accept-language: en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=HUFCAGm6DLSBFBIyf8/FC49vjokud6VWU7PmV6H9juU=; b=Fq2wDN+stOTl/t2k34tvz63lHG8lMnkU2HMSiHxupP04EL6mQLAsGH763T6jNV5LA3BrbCn+Ag/TJ7MAKCqaMJPQ8KRuuLjnkHrcw9RDoXrLG/QhzErWGsj7m/T9rENXLLD4EWKWxzoFEeflLST2+6ykiyLaPXQx+audxaV3+LuL3qntA+lRMLiZ6VGPksZPGyPZ1YjFkPVUBE5GE7PG5BFNwW+nwwyknocaFrAASJUjyqcfJhLhkq22JalMErXjjtxohkOm4wKJIQpee4BkPKknW4CuHz6N1Oa5YjeCtUcOs6P1uyi2datHvW/25rTG+PrTEdEYObzzzVpTz7IZCA==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=h+jKuGlBVvG6C1oHDcgrnc6/oqItiwBam/W2YuTzJxDhX+51Fqw4h73l6SptCnagj0dTUAm4uT7AI6SQg9iDytAu/r/uTHHvyk6TDbr434DI14oulQq99JB9SPnRGzakRX8Eq6OPOH6PhZJBHaROrLz0Z672f80L3fCrhg4vkw2lEj3LvB3+qTzuY+t8B6w1CZ46NfSdaJlYPrQw/jZro8G7GbZw1Gxh6+FqNhJoUO2PdlYARGwMoXG3VHlohvSKpW2ejlwA26A/SLszHWorNTffM9V5pykk4EEEFhckpGycy0016L9CF7S4DKlZWoHxH+iSF589nTHsqKROurPaMQ==
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
  • Ironport-data: A9a23:mCUnKaBCmwfh/xVW/yDmw5YqxClBgxIJ4kV8jS/XYbTApGsm0zQBz GoYX2GGOffZazDyKdlxboS/9hsE7JDTx4M2OVdlrnsFo1Bi+ZOUX4zBRqvTF3rPdZObFBoPA +E2MISowBUcFyeEzvuVGuG96yE6j8lkf5KkYAL+EnkZqTRMFWFw0HqPp8Zj2tQy2YbhU1vU0 T/Pi5S31GGNi2Yc3l08sPrrRCNH5JwebxtF1rCWTakjUG72zxH5PrpHTU2CByeQrr1vIwKPb 72rIIdVUY/u10xF5tuNyt4Xe6CRK1LYFVDmZnF+A8BOjvXez8A/+v5TCRYSVatYowqgmutu5 NxCiaGbYhUybozCw+YyAxYNRkmSPYUekFPGCV6WlJXJimHjLT7ryfgoC1wqN4oF/OoxGXtJ6 fETNDEKaFaEmv6yx7W4DOJrg6zPLuG3ZMVO4Dc6l3eJUJ7KQribK0nOzdRR2CkxgPdFAt7eY NYcYDtrKh/HZnWjP39MWcNuwrr32BETdRVTsAKtuLJt3lHN9yly66L9D9X6VcajEJA9ckGw/ TudpDuR7gshHNeQwD7A/nO3jfLUhgvgSYcKHfu58ORriRud3AQu5AY+UFK6pby1jxC4UtcGc UsQ+Sx09fhvsku2UtP6Qhu05maeuQIRUMZRFOt87xyRzq3T4ECSAW1soiN9hMIOi+YzfiMG3 1C1ovjCFyc/kbPOS13N+eLBxd+tAhQ9IWgHbC4CaAIK5dj/vY0+5i4jqP4zT8ZZafWlRlnNL yC2QDsW2+xN1ZRSv0mv1RWW2Gz1/MOhohsdvF2/Y46z0u9uiGdJjaSE5EOTyPFBKouCJrVql CVcwJDBhAzi4IHkqcBgaOAEHbXs6/PbNjTZ2ARoG5onrWz9pjikYJxa5yx4KAFxKMEYdDT1Y UjV/wRM+JtUO3jsZqhyC25QNyjI5fa/fTgGfqmIBjarXnSXXFPdlM2JTRLKt10BaGB2zckC1 W2nWcitF20GLq9s0SC7QewQuZdymH1imzmNG8qkkEr5uVZ7WJJzYedUWLdpRrBphJ5oXC2Or L6zyuPWlk4OCbSmPkE7D6ZKfAlTcyJT6W/KRzx/LbfYeVUO9JAJDv7a27Q6fIJ5169SjP/P5 HihW0heoGcTdlWWQThmnktLMeu1Nb4m9SxTFXV1YT6AhiZ/Ca7ysvZ3X8ZnLNEPqb04pdYpH qltU5vaXpxnFG+dkxxDNsaVkWCXXE/27SqUITGfaSQyF7Y5AVShFinMJVe0q0Hjz0Of6aMDn lFX/lqCGsVSGVg+Vpq+hTDG5wrZgEXxUdlaByPgSuS/sm21mGSzAyCu3PIxPe8WLhDPmmmT2 wqMWE5Kpe7RpoY09J/CgqXd99WlFO53H0x7GWjH7ObsaniCpDr7mYIQAvyVeT39VX/v/Pvwa OhQycbjPaBVh11NqYd9TepmwPtmtdvirrNX1Cp+G3DPYwj5A79sOCDfj8lIqqhEx7sfsgyzA xrd9t5fMLSPGcXkDF9BflV0Nr7TjakZw2CA4+40LUP24D5M0ICGCUgCbQORjCF9LaduNN13z OokvvkJ5lHtkREtKNuH0HxZ+mnQfHwNV6Ir6sMTDIPx1ld57HhnOMaZJgqopZaFZpNLL1UgJ SKSiOzanbNAy0Hecn01U3/Qwe5agpdIsxdPlQdQK1OMk9vDp/k2wBwOrmtuHl4Jlk1Kg7BpJ 2xmF0xpPqHRrTplgc50WWrzSQxMARuu/FP8lgkSn2rDQkj0DWHAcD8nNeCW8BxL+m5QZGUAr rSRyWKgXTO0esj0h3E1XU1j8aSzEJp26xHIn92hE4KdBZ4mbDH5g6ioI20Vtx/gBsB3j0rC/ LE48OF1YKz9FCgRv6xkVNbDhe5MEEiJdD5YXPVs3KIVBmWDKjy/3D65LUruKM5AIvr991C1V p51LcVVWhXijyuDo1j330LXz2OYSBLo2DYDRl8vDUgvluLF6xZM7tfX/CW4g3I3SdJzl8p7M pnWaz+JDm2Xgz1ThnPJq85HfGG/ZLHooSXiifut/rxh+40r6YlRnYMai9NYfEl59CNn+A6Rt QLHIaTRyoSODKxyypD0HPwr6xqccLvOuSfhzOx3m9RJcdbGMMOIvAQQwrUi08K6IpNJM+lKe X+xXBIbEa8LUHvak4wUpnVZK5R02A==
  • Ironport-hdrordr: A9a23:tgc5aKH2ejrog6JkpLqE08eALOsnbusQ8zAXP+Abc3Nom62j5r mTdZEgviMc5wxhO03Ip+rhBEDtewK5yXcN2+Qs1NSZLW/bUQmTQr2KhLGKq1fd8kvFh4lgPM xbAspD4bPLfD1HZBLBgTVRm70brOW6zA==
  • Ironport-phdr: A9a23:qnw/yhZ4y4lnexbIVSIMrFb/LTHw2YqcDmcuAnoPtbtCf+yZ8oj4O wSHvLMx1gSPBN2EoKsfw8Pt8InYEVQa5piAtH1QOLdtbDQizfssogo7HcSeAlf6JvO5JwYzH cBFSUM3tyrjaRsdF8nxfUDdrWOv5jAOBBr/KRB1JuPoEYLOksi7ze+/94PdbglSmTaxfbF/I BqroQjfq8IbnZZsJqEtxxXTv3BGYf5WxWRmJVKSmxbz+MK994N9/ipTpvws6ddOXb31cKokQ 7NYCi8mM30u683wqRbDVwqP6WACXWgQjxFFHhLK7BD+Xpf2ryv6qu9w0zSUMMHqUbw5Xymp4 qF2QxHqlSgHLSY0/mHJhMJtkKJVrhGvqABwzIPPeo6ZKOZyc7nBcd8GW2ZMWNtaWSxbAoO7a osCF/QMMvxcr4njplsOqwa1Cw+tBOPq1zRFgWP50rc+0+Q/EAHG2hQvEM4AsXnPrNX1M7sSU eWvw6nJyTXPde9Z2TD46IXRdB0qvP6DU65qf8XL1UkvCx3Kjk+WqYH9PT6b2esAvmaH4udhU e+hi2wqpx1xrDWrxskglofEi4wLxl3H+yt0xJo5KcC6RUNnZdOoDppduz2bOoV4Xs4vQ2dls zs0xL0BvJ60ZikKyJI/yh7aavyIb5KI4hX4VOaWLzd4mGhpd664hxa390Wr1+7yVtGs3VtFs iZJiN3Bum4X2xDN9MSLUPhw80e51TqR1g3f9u9JLEUpmabHMJEsw7s9m5QPvUjeGyL7llv5g aqTe0gq+OWl7fnsbK/8qZ+GLYB0jxnzMqQwlcy7BuQ1KhAAUnSc9+ihyrHv5EP3TrJLg/Evl anWq47VKd4cpq6kHw9ayYEj6wu5Dzi7ytgYhWMHLFVZeB2Zk4fpJ1DOIPf+DfulhFSsjStrx /TBPr3mAZXBNGTMkLDkfbpl6k5czhQ8zcxH6p9bFr0NOvb+VlHruNDGEBM1KQ+5zub/BNV4z IweWGaPAqGDMKPVtF+F/v4gLPOIZI8LuTb9LeAq6OLgjHIimV8derWp3Z4NZ3C5GvRqOVmWY X3pgtsZF2cFpRIxTPb2h12aTT5Te3GyUroh6j0jEoKpEZ/DRpyxgLyGxCq0ApJWaXpCClyVD Hjodp6EVOsRaCKJOc9siScEVLikS485zx6irg76y7x9LurV4CIUr5zj1MImr9HUwFs5+jVwS sicyGqQVHpcn2USRjZw0ro16Rh2xV6HlKR5mPdFDsd75vVTUw58O4SKnMJgDNWncQvFYNaPA HKnR53yCjg1UNM39NQRS0Z6B9CrjxSF1C2vVexG34eXDYA5p/qPl0P6INxwni6uPMgJilAnR pEKLmi6nutl8AOVAYfVkkKfnqLsdKIG3SeL+n3QhXGWshR+Vwh9Gb7AQWhZflHf+N/w4l3DS YilFpwnNRdEwM+GbKBNb46hlk1IEc/qI8+WeGetgyG1DBeMyKmLad/hcmED3SPqA1cskwcP+ H+HMU41ASLy63nGAmlWHEn0K1jp7fE4qH6/SRosyBqWakR6y7ev0jg8oKXGDt82gPcDsipnr ChoFlGg2d6QE8CHuwdqYKRbZ5U6/UtD0mXa8Qd6O/RMNohEgVgTO0RytkLqjVBsD5lY1NItp zUsxRZzLqSR1BVAcSmZ1Nb+IO+fLG665x2pZ6PMvzOWmN+L5qcC7ug5oFT/rUmoEEQl6XBuz 9hS1TOV+JzLCAMYVZ+5XFww8lB2oLTTYy914I2xtzUkOqCwrD7E7Nk2LOsi1hOpftMZO6SBV UfzH8AcG8myObkygVH6JhkAPe1U6Os1J5b6L73XgujxZqAwwWHD7ywP+o1230OS+jApT+fJ2 8xA2PSExk6dUDy6il69s8fxkIQCZDcIH2P5xzK3YewZLqB0Y4sPDn+jZsOtwdArzZXkX2BZ8 mmoGHsG39OscBuWKVf62EcDsCZf6Wzigia+wzFuxnsip66B3Sr5yPvKdB0bP2dKQC9pilKmc u3Wx5gKGUOvaQYujh6s4033krNaqKpIJG7WWU5UfiLyIgmOS4OIv6GZK45K4ZIs62BMVfikJ EqdQfj7qgcb1CXqGy1fwio6fnekoMexkxt/gWObZHF9yRiRMcp5wQne4uvXWtZR2SYDTSh8z zLQAxCwMsKo8tOdi5rY+rzmETP7EMcJN3m2hYqb/DO2/2hrHQGyk5XR0pX8HA423DW6n9hmW CPUrQrtN4zi1qC0K+ViLQFjAF7x7dY/G5krztN21ctWgyJc1sjGmBhP2X3+Othax6/kOX8ER DpRhsXQ/BCgwkpoaHSA24P+UHyZhMpnfdizJG0MiUdfp4hHDrmZ6LtckG57uF29+EjaaPxjn zEqwuQG6HkGhugIvEwmySDXUdVwVQFIeDfhkRiF9YX0p6xTemepRrOv/Ep5gdWoDbXEqQZZE iWcGN9qDWp76cNxN0jJ2Xv459T/edXeWtkUswWdjxbKi+UGYIJ0jPcBgjBrfH7spXBwgfBul gRghNvp2erPY3Uo5q+yBQRUcyH4d99GsC+4lr5Qx46Xx9z9Qs0nS29NBN2wCqv1WDMK6aa7b 0DXSGJ68jHDXuOBeG3XoEZ+8yCSSdbybynRfD9Biow+DBiFeB4G2FxSAGp8xthhUVn1jM35L hUj72hItAeh80lClrowZUu4Dje6xk/gay9qGsKWdEMEt1gbtUmJaZfMvKUvT2lZ+JalsQCAe HeDaQgOFXsORkGPG1HkOP+p+MXE9O+bQOG5Kp6sKf3LoOhaHZ9k3LqX25B9t3aJP8SLZDx5C uEjn1BEVjZ/EtjYnDMGT2oWkTjMZoiVvkX09ipyp8G5uPPlPWCnrZOIEKdXOM5z9gqep46mb rTVqAMnbDFS29UL2GPCz6UZ0BgKkSZyejKxELMG8ynQUKbXnawRBBkeDkE7fMdF9KMz2ABRN NWT1ouzh+Q+1KRzWwoNXEepgsyzYM0WP2yxfEjKAkqGLvXOJDHGxd32fbLpSbBUi7Yx1VX4s jKaHkn/ezWbwmWxEUH1d7sWynHGb3k88Mmnfx1gCHbuVofjYxy/appsiCEuhKczjTXMPHIdN j51dwVMqKeR5GVWmKYaeSQJ43x7IO2Dgyvc4fPfL8NcuvJvHCVyoOlFyHQ9175c7SUCT/tw0 ni3zJYmsxS9n++DxyAyGgJJsSpOjZmXsF9KH4z8r8MFdVOauRUH4COXFggAoMZjBpv3oadMx 9PTlaX1bjBf79bT+shaDM/RYpHiUjJpIV/iHzjaCxEARDigODTEhkBTp/qV82WcspkwrpW/0 IpLULJQU0Y5U+8LEkkwVsJXO495B3l39NzTxN5N/3e1qwPdAdlXroySHOzHGu3hcX6YleUWO 0NOkOm+dcJLcdSmk016NgsmxMKTQxWWBZYV5XQ/C2186ERVrCojFCtqgxqjMkX1pyZPXf+sw kxv0lc4PbtrrHG0pA5oblvS+nlqmRFoy4y82GKfLGapfvX3AdEzaWK8tlBvYMnyG18nNFTrz 0I4bGyWFfUN3/Nhc2tvlQPR64BXF/IaVbdDfBIb2fCQYbMvzEhYrSKkg0RA4I6nQdMnnQ8uO /ZETlpm8ic6NpsZAPKVI6BEiF9NmqiJoymkkPgrxxMTLFoM92XUfzMUvEsPNf8tIC/6p4SED CSCnCdGcWkIEfEtp6AynqvSE+SH0yfp0roFIUe0ZbX3Eg==
  • Ironport-sdr: fIFT7pPnwtuYT6KBR5CpLI79m5WOv+BKnvqOC3zek/ezMA4VT44IxwQyrZMccUUboKNbUu8rbf S2tdiMx24F4NYX/lm+pPNL2Sog+h34aStaw4p9NaU+qgog0ST+RhZtetUuEQ9mXbNhPaVY/C9m a2o7xcVUlB1AXmb/DwznpRsiqpdet++IVOU1ZYAON3wL7TB8AsqSOATxAl7wOu2aMezYcjyYQh SV8b6UHfe6xF6puI5HDqGQmlHjwd7jmTwBJCZn4sN3FIgGprfNkNuJzYRrwL3ozJFw6pjaElHD 4NiLbNbaiLf2sGG7Me8173cE

Hi there,

 

           Not sure if this problem has a solution, but would like to get some opinion.

          

           Suppose there is a 3D surface, and I specify 2 points (A & B) that lies on the surface. I would like to construct a Bezier curve that lies on the 3D surface that starts at A and ends at B.

           The control point can either lie outside of the surface or on the surface.

 

           Is there any functions/packages within CGAL that might help to achieve this ?

 

Regards

Calvin

          

 

Sent from Mail for Windows

 




Archive powered by MHonArc 2.6.19+.

Top of Page