Skip to Content.
Sympa Menu

cgal-discuss - [cgal-discuss] On cell deletion, do neighboring cells need neighbors to be specified?

Subject: CGAL users discussion list

List archive

[cgal-discuss] On cell deletion, do neighboring cells need neighbors to be specified?


Chronological Thread 
  • From: Adam Getchell <>
  • To:
  • Subject: [cgal-discuss] On cell deletion, do neighboring cells need neighbors to be specified?
  • Date: Wed, 29 Jun 2022 13:52:25 -0700
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
  • Ironport-data: A9a23:xRpDu6vCw4m8R51zIZ7mU9igw+fnVJJYMUV32f8akzHdYApBsoF/q tZmKT/SOP3cMWv3L9h0aty/oR8DuJXVmt5iSwI/pHgwQn9EgMeUXt7xwmXYb3rDdJWbJK5Ex 5xDMYeYdJhcolv0/ErF3m3J9CEkvU2wbuOgTraCYEidfCc8IMsboUsLd9UR38g527BVPyvX4 Ymo+5OFaQf/s9JJGjt8B5yr+EsHUMva42twUmwWPZina3eD/5W9JMt3yZCZdxMUcKEMdgKJb 7qrIIWCw4/s10xF5uVJPVrMWhZirrb6ZWBig5fNMkSoqkAqSicais7XOBeAAKtao23hojx/9 DlCnZ2wZQMxI73io8VDQStUEwUhAKJs8ZaSdBBTseTLp6HHW37lwvErC0BveINBpbsxDmZJ+ vgVbjsKa3hvhcrsmOP9GrQq35p8apC0YevzuVk4pd3dJf8qSJWFTKjW7t9V2DMYicVHHPKYb M0cAdZqREibP0wQZQpPYH44tPmR11T2dzN0k3mu9IMr32z31j1D37e4ZbI5ffTTHZkP9qqCn UrN8G39Rx0bL9eC0iGt6WOpnuaJnCXhWYtUGqfQyxJxqFiax2hWDxxPEFXi/qT/hUm5VNZSb UcT/0LCsJTe6mSqTvX5RwCojkWl4AwuV9p0TNA1wgikn/+8DxmiOkAISTtIadoDvcAwRCA32 lLhoz8PLWw/2FFyYSLNnop4vQ9eKgBOcjBfPX5soR8tpoi88Ntq33ojW/46SPbt5uAZDw0c1 NxjkcTTr7AajMpO0KTiuF6e3G/qqZ/OQQo4oA7QWwpJDz+Vhqb1OeRECnCBtp6sybp1qHHf5 hDofODAtogz4WmlznDlfQn0NOjBCwy5GDPdm0VzOJIq6i6g/XWuFagJvmwgeR02bp1eI2K2C KM2he+3zM8DVJdNRf8nC79d9+x3pUQdPY+4CayMNYYmjmZZLV/frHEGibGsM5DFyRBwy8nTy L+UdsGjCXtyNEiU5Gveegvp6pdynnpW7TqLG/jTlk37uZLDOiP9YepaaDOmM7FhhIvZ8V692 4sOZ6OilU8DOMWgOXK/2dBIfTg3wY0TX8+eRzp/Lb7dfGKL2QgJV5fs/F/WU9U7xfsNy7eRo y/Vt40x4AOXuEAr4D6iMhhLAI4Dl74mxZ7iFSBzb1uuxVY5ZoOjsPUWe5ctLOso8eViybh/S PxcI5eMBfFGSzLm/TUBbMml/NYyKkjz3Q/ebTC4ZDUffoJ7Q1Ob99LheDzp/nZcAyeys/w4v LD9hBjQRoAORlg5AcuPMKCvwlq9sGIzguV3W0eUcNBfdF+9oodvIi31yPQwJphUexnEwzKb0 SeQAAsZ9bGd+d9rrIGRiPnd/YmzEuZ4Ek5LJEXh7O67ZXvA426u4Y5cS+LXLz3QUWXD/q/9N +hYyvfLNuJewARHvo96JLZczawk4uzpqbIHnB9vG2/GbgjyB75tfiuG0M1IuvEfz7NVo1HqC EeG+90fPrTQfc28TwNXKw0iYeCOk/oTn2CKv/gyJUz74g5x/aaGARoOZUjS0HQFIesnKp4hz McgpNUSt161hC0sP4vUlStT7WmNciENXvl1rJ0cG4O32AMnxksYPc7ZAy7ypZaOMpBCaxZ3Z DCTg6XGivJXwU+bKyg/En3E3Ox8g5USuUAVkAVTeQzRwteV1OUq2BBx8CgsSlgHxBtw1e8ua HNgMFd4JPnT8jpl7CSZs7tAx+2c6NylFk3NJ58hkWTYSwyvVzWIIjRiZKCC+0cW928adT9el F1dJKAJTh6yFPwdHANrMaKmlxAnZdN0/wzG3sugGqxp2rEkNCH9jPbGiXUg8nPa7ABYuKEDj eZv9ed0L6b8MEb8ZkH955ayjdwtdfxPGICOrTyNMk/E8aEwtQxeAQSzFn0=
  • Ironport-hdrordr: A9a23:FzQVU6NBhoU0UcBcTvOjsMiBIKoaSvp037BL7TEVdfUxSKalfq +V7Y0mPHPP+VUssQ8b6La90di7MBfhHPdOiOF7XYtKNDOGhILCFvAE0WKN+UyZJ8Q8zIJgPG VbHpSXTLDLfDpHZArBjzVQa+xQu+VvOZrHudvj
  • Ironport-phdr: A9a23:noaSTRL9n4dNFLCIVNmcuBNvWUAX0o4c3iYr45Yqw4hDbr6kt8y7e hCFvrM00A6CBNiBo9t/yMPu+5j6XmIB5ZvT+FsjS7drEyE/tMMNggY7C9SEA0CoZNTjbig9A dgQHAQ9pyLzPkdaAtvxaEPPqXOu8zESBg//NQ1oLejpB4Lelcu62/689pHJfglFiz6wbbxvI Bi2swnaq9Ubj5ZlJqst0BXCv2FGe/5RxWNmJFKTmwjz68Kt95N98Cpepuws+ddYXar1Y6o3Q 7pYDC87M28u/83kqQPDTQqU6XQCVGgdjwdFDBLE7BH+WZfxrzf6u+9g0ySUIcH6UbY5Uimk4 qx2ShHnlT0HOiY5/m7LhcN+kaFVrhy/qRJ42IPbep2ZNP9kc6PdYd8XR2xMVdtRWSxbBYO8a pMCAvYcMulCqon2uloAogWiBQawBOPg1DtIhnvr1qA9yesuDBvJ3Ak6E9IBrnvUsMn6NKcMX uCxyKnF1jrDb/ZM1jf87IjEaAwuofaJXb9pd8fa1EYgGR/fgFqKtYzlIy2a1v4Ls2WD4edtV /6ih3AopgxsvjWj2Mchh43Xio4Ly13I6Th0zJs1KNC4R0B2bsOpHpVRuiyHNIZ7X90vTm52t Ss4xLMLpZi2dzUExpQgwh7Qcf2Hc46Q7xLsVeaRPTd4hG9+d76lmxmy9k2gxvXmWcapyllKq yVFncfQtn8R1xzc9MyHSv9n8kemwzaP2Abe4fxHL0AsjafXNYItz7oqmpcQsUnPBDL6lUT0g aOMa0kp+Oil5/z5brjnupOQK4p5hhz8P6gyhsCyBOc1MgYAUmSH/OmzyqPv8VH8TbhFk/E5j rXWvZXUJckVvKG1HQpY34g45BuwETur1coUkWQJIV9Kfh+MkpLnNEvUIP/iCPeym1Ssnylvx /DBJrDhB4/CLnnHkLv4erZ96lNQxBM9zdxC5Z9ZCqsNIP30Wk/2u9zYCgE2PxaozObgDdVxz oIeWWSRDa+FKK7er0OE6+Y1L+SPZIIZoivxJvkn6vL0kHM0m18QcbGs3ZQNaXC4GvpmI1+eY XrpmtoOC3oFsRA7TODwh12NTyJTaGqyX60i4jE7DJmrDYjGRo+3gbyB2D23EYFRZmBDElyMF 2zneJ2eW/gQcCKSPtNhkjscWLS8U4Mhzw2htBfmy7p7KerZ4jEXtZ3529hx/uHciBAy9SdoA MSAyGGNVHp5nngIRj8zxKBwu1ZxylaF0ahigvxXD8Zf5/1TUlRyCZmJxONzD5X+WxnKY8ySY FegWNSvRz8rHfwrxNpbSkp0Hp2NgwzI3yeuB/dBnrCCAdo7/77X33X1I+5yzn/H0O8qiFxwE ZgHDnGvmqMqr1ubPIXOiUjMz85CFIwZ1S/JriKYyHaW+VtfW0h2WLnEWnYWYg3Xq8747wXMV ezmEqwpZy1Gz8PKMa5Wcpvxl1wTTfvqPZLRbn66m2q0AT6Hw7qNaMzhfGBOlD7FBh08mhsIt W2DKRB4Ay6gp2zECzk7HF7mZgXj/PV1qH6/Smc7ygiLawtq0L/msgUNi6m6TPUelqkBpD9nq zhwGwOl2MnKDtObuwd7VKBVYNd451YekGyA6FE7MZunIKRvwFUZdmybpmvI0BN6QsVFmMku9 jYxyRZqbLif2xVHfi+Z2pb5PvvWLHPz9Vahcfye3FaWy9uQ9qoVjZZw41z+oAGkEFYj+HR7w pFU1XWb/JDDEAsVV9r4TE828xFwo7ySbDM64svY0nhlMK/8tTGnuZphDecsz1CvcstUMK6AE Cf9FsQbA46lL+lr01mlYxQYPfxDobYuNpDDFbPO06qqMeB82TO+2D4fscYtjwTVqXU6E7GVj PNni7mC0wCKVinxlgKku8Hzw8VfYC0KW3C4wm7iDZJQYat7ecAKD32vKou53IYb5dalVnhG+ VqkH15D1tWufE/YZlD02Etf2FgcoXGjnQO3yjV1l3ciqa/Vj0msi6zyMQEKPGJGXjwohFvlJ M67gswRXEWsayAmkRKk4QDxwK0R98EdZyHDBExPeSbxNWRrVKC946GDb8B445QtqSxLUe64b Dh2U5bFqgABm2PmFmpannUgci2y/4/+lFp8gX6cK3B6qDzYf9txzFHR/o6USflU1zsADC527 FufTlGwNtzv8tiInJfOtuSWWGeoV5kVei7uhY+Nryq042R2DAb3xaji3I26V1FkjmmiiIQiX D6tzl60eoTx0qWmLe9rNlJlAlPx8YsyG41zlJcxmIBF3HEbgpuP+n9U9AW7ed5f2K/4cD8MX WtRm4+TsFWjgRM8aCvWmtGcND3V2MZqatikb3lD3ys865oPE6KI9PlemiAzpFOkrAXXaPw7n zEHyPJo5mRJ5oNB8Acr0CiZBagfWEdCOim53R2E5tX4o6hLb2aidbyY2093nNTnB7aH6FI5O j6xatI5ECl8498qelvA2Xi15Yz4c9ndadY7uRidkhOGhO9QYsFU9LJClW9sPmTzumcgwugwg El13J20i4OALn1k4KOzBhMLfi2wfc4Y/SvhyLpPhsvDlZ76BY1vQ39YOfmgBeLtCj8Zsu7rc hqDACFp4GnOAqLRREee8Bs09C+JSsHzcSvLez9Bio8+DBiFeB4B3EZOB258x8BhUFjtnZ2EE g8x5yhNtACm7EIUkKQwcUG4CD+XpR/0OGlqDsLDfVwGtkcaoB2Nec2GsrAsRWcBotv4/VbLc ivCN2EqRSkIQhDWWAylZ+Pzo4GGq6/BWKK/N6ecOO3e77UBCLHYg8roiNIu/i7QZJzQZT87X qF9ggwbGiknfqaR0zQXF35Nz3OLP5Pd/U3svHUw95/38ey3Cli2u83SW/0LYI8po1fv0O+CL 7LC3n8nb2wDh9VXnzmQj+FOuTxawzdncz3neVgZnQjKSq+Y2qpeDhpBLjh2KNMN9aU3mA9EJ c/cjNrxkL9+lP88TVlfBxTnnYmyaMoGLnvYVhuPDVuXNLmAOTzAwt3mKaK6R7pKiexIthq28 T+FGk7nNz6HmnHnTReqee1LiSiaOlRZtuTfOl51DnP/Sdv9dhChGNp+jDlzxrxtw32TajNaP j97fEdA6LaX6GIQg/lyHXBA8mswLeSAnHX8jaGQIZIXvP13RyVswrgCsTJqlv0Msn4CHaMoy 06w5pZ0rlqrk/eC0G9iWRtK8HNQgZ6T+F9lMuPf/4VBXnDN+FQM63+RAlIEvYgAaJWntqZOx 9zIjK+2Ji1F9oee9McVAo7bJd6MMHclNTLmHTfVCE0OSjvhZgS9zwRN1eqf8HGYtM1wsp/3h J8HUaNWTnQwH/IeT0NkRZkMecgqGDwjlrGfgYgD4n/0/3yzDI1K+5vAUPyVG/DmLj2U2KJFa xU/yrT9NY0PN4f/1iSKhXF1mY3LHwzbWtUf+0WJiyc7pUxM9D51SWhhgyoNiyuo6X4XUPm1x 1s401QjJ+sq8zjo7hE8IV+Y/EMN
  • Ironport-sdr: OBXXFzRYi1W3KAxCHm+4IMci4Rc4toUgzOFNVoVTzSN0hEZoxXiY+SV4+FcGic37DRCIkYD52Y Yzu4924JSiZQW6lxWMEHsdnyLMdJRa0GiqAytBxG3jJq4V6juS5EXwumIG5mQI6M3pVViOAXPk OmDSFsJTyJpkkULWn0EmYmNpKxhulUsHOFStC6jtQ+yZ4hi+x82Nxn78UxOYYI7fRYL5SqdbGR ie0JvFFDJ8Xr87ToTaxVAEMOYhEk7iHS6NhgRKlIBzoPx9l80x4USvaBaZrU1qk6khHt0NMB+z 4oTtPrW/wOJ3dhxVgXDdp3oZ

Hello all,

I’m working on a bistellar flip for 3D triangulations, briefly as follows:

Step 1: Find a candidate edge for which a circulator around that edge obtains 4 incident cells.

Step 2: Get the 2 vertices comprising the candidate edge.

Step 3: Get the remaining 4 vertices in the 4-cell complex (there are 6 vertices in the cell complex).

Step 4: Obtain a new pivot edge between 2 different vertices for which a circulator around that pivot edge would obtain 4 new incident cells comprised of the 6 vertices.

Step 5: Find the 8 neighboring cells of the original 4-cell complex.

Step 6: Delete the old cells.

Step 7: Create the new cells using the same 6 vertices.

Step 8: Assign the 8 neighboring cells to the cells in the new 4-cell complex.

Details here: https://github.com/acgetchell/bistellar-flip

The issue is at the conclusion of Step 8, all cells have been verified as valid, cell orientations have been verified/reoriented, but the triangulation itself is not valid.

The error is: “neighbor of c has not c as neighbor”

My question is, do I also need to track the 32 neighboring cells of the 8 neighbors of the 4-cell complex being flipped? (And in my test case, the 8 neighbors are all infinite.)

Is there some other mistake?

Thanks for your advice,
Adam

P.S. I have looked at the Tetrahedral Remeshing package at Sebastien Loriot’s suggestion. I’m presently unsure if any of those functions (e.g. construct_opposite_vector_3_object()) are relevant.
-- 
Adam Getchell
https://adamgetchell.org






Archive powered by MHonArc 2.6.19+.

Top of Page