Subject: CGAL users discussion list
List archive
- From: Johnny Bigert <>
- To:
- Subject: Re: [cgal-discuss] Calculate polygons of projection
- Date: Fri, 1 Jul 2022 08:45:36 +0200
- Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:mHTpNqjKw/moup4uNMh6Z4xOX161XhYKZh0ujC45NGQN5FlHY01je htvWj3UPPmKZ2ChLth1PN+2/EtXv8DSnN8ySgFkrSAyQipjpJueD7x1DG+gZnLIdpWroGFPt phFNIGYdKjYaleG+39B55C49SEUOZmgH+a6UKieUsxIbVcMpB0J0HqPoMZkxN8y6TSFK1nV4 4mq/JWGYAbNNwNcawr41YrT8HuDg9yp4Fv0jnRmDRyclAK2e9E9VfrzFInpR5fKatE88t2SG 44v+IqEElbxpH/BPD8KfoHTKSXmSpaKVeSHZ+E/t6KK2nCurQRquko32WZ1hUp/0120c95NJ Nplrr6fGBwtLojwnvU6TiJ7EQxMbbJM5+qSSZS/mZT7I0zudnLtx7B2DhhzM9BCvOlwBm5K+ LoTLzVlghKr3brnhuLmDLM12IJ+dqEHP6tH0p1k5TPeDfAgULjORa7X79IezCYi7ixLNa+OP ZRDM2A3BPjGSxBIOEs7KKwbpuuXu3TSKAZbtlXE/aVitgA/yyQoiOS3WDbPQfSBSsxR20qZv Wnb5H/RGQAfLNXZyDyf83vqiPWnoM/gcIcbFbn97vwzxVPOnCocDxoZUVb9qv684qKjZz5BA 1c21Xs1qbgXyEq6acTGfB+Vki6btAFJDrK8DNYGwA2Kz6PV5SOQCW4FUiNNZbQaWCkeFWxCO rihz4OBONB/jFGGYSnCqerM/FteLQBQfDBSP3ZVJecQy4C7+Nlbs/7Zcjp0/EeIYjDdHDjxx 3WSrnF7iehJy8EM0Kq/8BbMhDfESnn1ouwdtl6/soGNtFsRiGuZi2qAtwSzARFoct3xc7V5l CJY8/VyFchXZX13qASDQf8WAJai7OufPTvXjDZHRsd8qWr0oC74J98BvlmSwXuF1O5UKVcFh 2eD6WtsCGN7YRNGkIcsPt3tU592pUQePY21DqGIBjaxXnSBXFbfoHsGib+40Gfqn0wh+ZzTy r/KGftA+U0yUPw9pBLvH7l1+eZymkgWmD2OLbimkEzP+efPPBa9FOZeWHPTP7BRxP3e/G39r Y0EX+PUkEU3bQELSnOImWLlBQtacyZT6FGfg5A/S9Nv1SI2QD56VqGAntvMueVNxsxoqwsBx VnlMmcw9bY1rSSvxdyiZi8xZbXxc4x4qH5nbyUgMUzxgyouZ42y5qpZZ4olJOF1+OtmxP9yb v8EZ8TZX6UUFG+cqmtCYMmvtpFmeTSqmRmKY3ivbg8gcsMyXAfO4NLlIFfirXFcEiqtuMIii LS8zQeHE4EbTgFvAZ+OOvKixl+8p1YHn+d2UxeaK9VfYhy0ooVsIDH7g7knMtNVcUfPwT6T1 gC3BxYEpLCQ8tRrq4KY2v+J9t77HfF/E0xWG3jgwYy3bSSKrHC+xYJgUfqTeWyPXm3D56j/N /5eyOvxMaNbkQ8S4ZZ8Cbti0Yk3+8Dr++1B1g1hEXjGMwarB7dnLiXU1MVDrPcWlLpQuA/zQ kDWv9cHY/OGP8TqFFNXLw0gN7zR2fYRkzjUzPI0PESqu3MtreTfCR1fb0uWlShQDLppK4d5k +0vj8gbtl6kgR0wP9fa0y1ZqzaWInobX/l1v50WGtWw2A8iy1UHeZ6FTyGruteAbNJDNkRsK TiR3fKQi7NZz0vEUnwyCXmdgrYH1MpW4EhHnA0YOlCEutvZnftrjhdfxjI6E1ZOxRJd3uMvZ 2VmOiWZ/0lVE+uEUCSCY4ytJ+2FLBiQ+0i001lQ0WOEFQ+nUWvCKGB7MuGIlKzcH6SwYRADl Ix0Ck68OdopQC019iY0UlNvprrzXM4ZGsjqhpW8B8rcd3UlSWONv0JtDFbkbzPqB8gsjkCBt fh4lAq1hWsXKgZIy5AG50KmOXj8hfxKyKGugR2swU/RIVzhRQ==
- Ironport-hdrordr: A9a23:/VCK56trWlnOV5vUNrOF30/c7skDT9V00zEX/kB9WHVpm62j5r mTdZEgvyMc5wxhPU3I9erwWpVoBEmslqKdgrNxAV7BZniDhILAFugLhrcKgQeBJ8SUzJ876U 4PSdkZNDQyNzRHZATBjTVQ3+xO/DBPys6Vuds=
- Ironport-phdr: A9a23:3HxqFx8KimUQMv9uWWu1ngc9DxPPW53KNwIYoqAql6hJOvz6uci4Z wqGuK8m1QaTFazgqNt8w9LMtK7hXWFSqb2gi1slNKJ2ahkelM8NlBYhCsPWQWfyLfrtcjBoV J8aDAwt8H60K1VaF9jjbFPOvHKy8SQSGhLiPgZpO+j5AIHfg9q52uyo5pHeYxtEiDWgbb9vM hm9sBncuNQRjYZ+MKg61wHHomFPe+RYxGNoIUyckhPh7cqu/5Bt7jpdtes5+8FPTav1caI4T adFDDs9KGA6+NfrtRjYQgSR4HYXT3gbnQBJAwjB6xH6Q4vxvy7nvedzxCWWIcv7Rq06VjS46 6dgVQHmhiEJOTUk9G3bl859gKddrRm8pRJw3pTUbZmaO/pwfKzTfd0US2lcUMhPSyNMGZmzY 5cVAucbIepUs4vwql0TphW+HwmsA+bvxydMiH/x3a061eIhEAHb1wE9HtIOv2rbrM/pNKwPV u21zq7IzTXFb/NQ2Tbw85bHchY9rvGRRr1/b9DdyEYvFgLEl1idr5HuMDyJ2OoXqWeb8/ZgW vy1i24hswx8piSiy8gvh4fHmo4YxVPJ+Cp7zYspONG1R1J3bcKgHZZRqi2UOYR7T90iTm12u ys317wLtIO5cSYKx5kqyB7RZvqaeIaG5RLjUfyeITZ+hH99drO/hhWy8Um4yuLiS8a00UxFo jBCktnWuXABzxPT6smbSvt940euwiyD2BzU6uFBOUw0lKzbK4QgwrEqjJYTv17DEynrk0v1l K+bblso9vSs5uj9YbjrpoWQO5Fphgz/KKgjmtKzDOIlOQYURWeb4/6z1Lj78E35XrpKivo2n 7HcsJ/AJMQbore1AxdX0oo+8hq/ATer3MoCkXkIK1JFfx2Hj4z3NF3UPP/4CvK/j0ytkDdt2 f/GIqXsDovRInXHirvsfrZw51RCxAYuzN1T/ZJZBq8ZLPL2QEDxtdjYDhEjMwyzxubqENd91 oQeWWKJBK+YMLjfvkGO5u0zPumDf5EatCzyKvkl5v/ilXk5lkQFcqmzwZQXcGy4HuhhI0iBf Hbgms0BHnsSvgoiUOzqj0WPXiJcZ3moW6Iw/yw0CIO9DYjfW4Ctm6eB0TygHpxWY2BGEkqDH W3pd4WCQfcMaTidLtVvkjweBvCcTZQ830SuqBPi0OggafHF/zUR85Plztl8oePJ0goj8CR9S MWb3WbKRG59miYERiQ9wbtk8nF70UqJ8bR9h6lYCcBL/KEOFRwrMIbVie18EdH7HAzbOcyYT U6vBdSgDzZ2Rd04x5oCYl12Bs653S3FxDegP7IFi+mLGIAs6fCbmGPgIt50jXfAzqgoyVc8B dBeMHWvwa95+Q+UDIHAlwCVlr2haL8HjxLKoWyMxG7LsEBDWxNrSo3EW2oebw3Yt4fX/ETHG p2pCbIhI0NryMGPMLcCPt/ujVNAVd/uPt/DaW/3i3aiU0XbjoiQZZbnLj1OlB7WD1IJxllMl Z7nHQ03ByP65nnbECQrDlX3JUXl7eh5rnq/CE4y1QCDKUN7hPKu4hBAo/uaRrsI264c/j87o mB2G1a72cP+BtyLugBsOrVNc4B1+09JgFrQrBc1JZm8N+Znj18afR5wuhbs0BVxDJRonM4hs XknihpjO/HQy0tPIhWf2524IbjLMi/y8RSoPrbRwU3b2c2K970n7f05rxD7vljsGBd4tXpg1 NZR3j2X4ZCi4BM6d5X3Xw538hF7o+qfeSwh/8bP0mUqN6CoszjE0tZvBe0/yx/mcc0NeKWDX BT/FcEXHa3MYKQjhkSpYxQYPetT6L98PsWocOGD0bKqO+AolSyvjGBO6oRwmkyW8C80RunN1 pcDi/aWu2nPHzX7jFGno+j6n4tZbzxUDnutiGDlCINXeqxubNMTE279a8azx9h4m9vsQysCr A/lVw5Agpb3P0fIPDmflUVK2E8aoGKqg369xj1wyHQyq7aHmTfJ26LkfQYGPWhCQC9ji03tK M66lYN/PgDgYg43mR+i/Uu/ybJcofE1LW7TR0FZVyXwJHxoX+2gp6jIMKstoNs49D5aVuixe wXQSLn9pR0L+y7lFHZUyXYrZiPg6d3p2hd9jmyaNnN6qnHULNpxyRno79vZXfdN3zACSUGUk BHvD0Ond5ms9NSQzNLYt/ymEnmmTttVeDXqyoWJsG2643drCFuxhaL7ltriGAk8mSj1srsiH SfPrBD6c6Hm0a+nO+8hblh6TFPx8Mt1HIhin5B43slBnyhHwM/Mozxayy/6Kp1D1Lj7bWYRS DJuoZad+wXj1EB5bzqIy4//SnSB055kbti+bHkR33F15MRLBaGIqb1cyHEt8xzo8ESLOKY7w 21OrJlmoGQXiOwIpgc3myCUA7RJWFJdITSpjBOQqda3sKRQYm+rN7m2zkt32967X9Tg6klRX mj0fpA6EGp+9MJ6ZRjO13317JDMdd/bcNge8A2FgV2T6oodYIJ0jfcMiSd9bCj/un0jzf8Tg BplwJu3+piWOS8+tLL8CRleODrvYsoV8Ty4lqdSkPGd2IW3F4lgEDEGD/6KBbq4VSgfvvP9O 0OSASUx/z2FTKHHE1bVuw926mjCGJexOzSLKWkFmJ98EQKFKhU64khcXS1mzMVkUFn7nIq7L Bg/vndLuhb5skcelL4ubUKkFD6B/EHwLW5lAJmHcEgIsEcbvx2TaYrGqbgrekMQtpy58F7Td CrBO1UOXTlPAgveXxjiJuX8uoOGqrTeX7vkaaOJOOXGqPQCBajUg8v1j80+uW7Lb5vqXDEqD uVniBMbDTYgRJufy3NXDHZO3yPVM5zC+0z6o3wr6Jj5qLOyBkru/dfdUeMDd4UyvUns0eHbc LfP4UQxYTdAisFWnCGOlehZhQ9IzXkpLmjlEKxc53SUEuSKwf4RVERdM2QqZYNe5qY4lGGhI Ob9jdX4nv59h/8xUBJeUED539qufYoMKn28M1XOAACKMq6HLHvF2ZO/Z6T0UrBWgOhO0n/48 T+GD0/uOCiCnDj1RliuN+9LliSSIB1Zvsm0bB9sDWHpSN+uZAe8NZd7ijg/wLt8gX2vVyZUK T9nb0ZEtaGd9wtdi/R7XnRDtz9rcLPClCGe4O3VbJ0RtLojAyh5kf5b/GVvy7ZR63IhJrQ9k y/To9hy5lC+x7PXm3w3DVwU82gN2djY2Ccqcb/U/ZRBR3veqRcE7GHLTg8Pu8MgEdr3/aZZ1 tnIkqv3bjZE6dPdu8UGVK22YIqKNmQsNR3xFXvaFgwAGHSpMmHZgV11nfeZ63eY6IgruNK// fhGAq8eT1EzGv4AXw59G8ceJZ5sQj4+ubuSjcpN/Xjn6ReMHoNVuZfIUv/UCvLqYmX87/EMd 14DxrX2Kp4WP4vw1hl5a1V0q4/NHlLZQdFHpiAJhu4cpUxM9D1mTDR21R+/LAyq53AXGLi/m Rtk0mOWhMwg8jzx6VpxNkvY9nNYeKYZlNPunDqcNi7gPvXpNbw=
- Ironport-sdr: siEoZ4nwOjqPjaKSUEZoi9tudOWJknaVo2M9VAJmt49Y/ZPGFAMSPxvXYefYjcMSEMfwAWJUlo +XfT59b0QgtOTpALyeb/WiXiyZ1v58UQ1aruPZuUtbXG5hI6fzOHFhjW7HckuoJtc8vsx/Q0o6 nxQt1agCY5dUYJ1aW44NPx62dPfzGOiUXVj9nyBF6rAaB9kHEZopS8FsbqkahXabTFMa3VWaGs c0yZ1c8Gvnq0fuqYWAFpkyAsUC/clqj7Ak1TeKhKK0jqQ0DvLAbtvUdTKAcPQ7lfuCUkf1dZhm LtbfMB49twq40LsWPfp6oDN5
Hi Sebastien,
Thank you for the link and the swift response, it was very helpful. I was trying to read up on CDTs, but the description is a bit abstract. Would you care to explain a few things about the linked example?
Best regards, Johnny
Thank you for the link and the swift response, it was very helpful. I was trying to read up on CDTs, but the description is a bit abstract. Would you care to explain a few things about the linked example?
- In simple words, what does a CDT do? I guess it incrementally creates a triangulation as we repeatedly call cdt.insert_constraint(start, end)?
- I got the impression from Wikipedia (https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation) that a CDT tries to keep the constrained edges (they mention an example with "breaklines along rivers")? But in the linked example, we use insert_constraint on all the edges of the mesh, and keeping all edges makes no sense, so I must be missing something :)
- In the linked example, what does the cdt.is_constrained(e) call do exactly? It can't give us back the insert_constraint-inserted edges (although the name seems to suggest it). So I guess it gives us the outer borders?
- If cdt.is_constrained(e) gives us the outer borders, then why do we iterate over faces, look at neighbors etc, why not iterate over edges directly?
Thank you.
On Thu, Jun 30, 2022 at 2:18 PM Sebastien Loriot <> wrote:
Hi,
this thread talks about this topic:
https://github.com/CGAL/cgal/discussions/6472
Sebastien.
On 6/30/22 12:51, Johnny Bigert ( via cgal-discuss
Mailing List) wrote:
> Hi,
>
> I would like to kindly ask for ideas regarding a problem I'm trying to
> solve.
>
> I have a triangulated shape as a Polyhedron_3 with exact constructions.
> The shape is closed and simple and may contain holes.
>
> What I would like to calculate is most easily described like this (and
> takes an input parameter z): if we cut away parts of the shape from Z =
> minus infinity to Z = z, what would the shadow (projection) of the shape
> look like if we shine a flashlight from above, from Z = plus infinity.
>
> The result will consist of multiple polygons since the shadow might have
> disjoint areas (e.g. candelabra) and holes (e.g. drinking glass).
>
> Do you have any ideas how to implement this efficiently? Sweep line
> algorithms? Ray casting? Thanks!
>
> Best regards, Johnny
>
>
>
> --
> You are currently subscribed to cgal-discuss.
> To unsubscribe or access the archives, go to
> https://sympa.inria.fr/sympa/info/cgal-discuss
>
--
You are currently subscribed to cgal-discuss.
To unsubscribe or access the archives, go to
https://sympa.inria.fr/sympa/info/cgal-discuss
- Re: [cgal-discuss] Calculate polygons of projection, Johnny Bigert, 07/01/2022
- Re: [cgal-discuss] Calculate polygons of projection, Sebastien Loriot, 07/05/2022
Archive powered by MHonArc 2.6.19+.