Subject: CGAL users discussion list
List archive
[cgal-discuss] Inconsistent Ordering of Points in Linear Cell Complex with Iterative Refinement
Chronological Thread
- From: Michael Vennettilli <>
- To:
- Subject: [cgal-discuss] Inconsistent Ordering of Points in Linear Cell Complex with Iterative Refinement
- Date: Thu, 6 Apr 2023 17:40:10 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:8jDPRKAp0jvKqRVW//nnw5YqxClBgxIJ4kV8jS/XYbTApDhz1TICm 2EZWTuPPfqINDD3f4glYY7noRtX6pbSydUwOVdlrnsFo1Bi+ZOUX4zBRqvTF3rPdZObFBoPA +E2MISowBUcFyeEzvuVGuG96yM6j8lkf5KkYMbcICd9WAR4fykojBNnioYRj5Vh6TSDK1rlV eja/ouOaDdJ5xYuajhPs/7b9ks11BjPkGpwUmIWNagjUGD2zCF94KI3fcmZM3b+S49IKe+2L 86rIGaRows1Vz90Yj+Uuu6Tnn8iGtY+DiDS4pZiYJVOtzAZzsAEPgnXA9JHAatfo23hc9mcU 7yhv7ToIesiFvWkdOjwz3C0usyxVEFL0OavHJSxjSCc5xTDXibs3ulvN04zfrIF09ZTMX5f5 NVNfVjhbjjb7w636LeyS+0pi8Z6ace3YMUQvXZvyTyfBvEjKXzBa/+StJkIgXFq35AIQaq2i 8kxMVKDaDzFYh5CIkkaDpQWk+Khh325eDpdwL6QjfNvujKJlVcsiNABNvLKRuzNYsgKtHqJm W6dxXvYHhwQHcGAnG/tHnWE37eTx0sXQrk6H7Kx8rtmgUaY23cIIAYHUEOy5/i/kE+3HdxFQ 3H44QIrpKk2sUGpF5zzA0H+r3mDsRoRHdFXFoXW9T1h1IKN5ivEBnUYTwVObZ8ZqeYGYQw1x 06gyoaB6SNUjJWZTneU97GxpDy0ODQIIWJqWcPiZVtVizUEiNFj5i8jXuqPA4bu0YKoQWCYL ySi6Xlh1+9K3Kbnwo3ipQif6w9AsKQlWeLc2+k6dmes7wc8aYz8IoL0tR7U6vFPKIvfRV6E1 JTlpyR8xLFXZX1uvHbVKAnoIF1Pz6jdWNE7qQI0d6TNDxz3pxaekXl4uVmS3ntBPMceYiPOa 0TOow5X75I7FCL0PfcoOtPtUZl7l/GI+THZuhb8Poomjn9ZJF/vwc2STRP4M53Fyhl3z/lvY /93j+7wVSpHYUiY8NZGb75FjeVDKtEWymTUSpT2pylLIpLPDEN5vYwtaQPUBshgtP3siFyMr 753apXXoz0CD7WWSneNreY7cwtQRVBlXsCeliCiXrTTSuaQMDp+WqC5LHJIU9ANopm5Yc+Yo iHsBh4HkTISRxTvcG23V5yqU5u3Nb4XkJ7xFXdE0Y+AiiN7M7W8prwSbYU2drQB/eluh6w8B focdsnKRrwFRj3b8n5PJdPwva5zRiSN3AiuBiuCZCRgXphCQweSxMToUDGy/wYzDw22l/AEn Zue6i3hT6A+GjtSVPTtVKr3znean2Qsp+Zpbk6ZfvhRYBrN9aZpGQzQj9g2AccGFjvbzBDH1 QzMWRY8jsvOqr8T79Pmq/2lrYCoMu0mBWtcPTDRwoiXPBng3FiI4NF/QsfRWhvCRkbYxb6EW dxF693dbNgWg0dssadnNrRgkJIF+NrkooFFwjReHHnka0qhDpViKCKk2fZjm7JsxLhLnxmfQ WOKp8dnPIuWNPPfEFI+IBQvasKB36o2nhjQ9fEEH1Xo1hRo/baoUVRgADfUsXZzdIBKCYICx fstnOU06Abl0xojDYugvxBurm+JKiQNbrUjupQkG7TUswsMyG8TRbzHCyTz3oODVMUUDGkuP Q2vpfTjg5Zy+xP8VkQdRFn388hTv5AsgCxx7UQjIg2Jk+XVh/Vs0xx29y82fztvzR5G8rxSP 2R3BnJxPoGL2Sliv+lYfmWWAwoaLgaoyk/w7FoolWPiUEijUFLWHlA9Ieqg+EM48XpWWzpmo JW07XnDaimzWu3cxQ4wVlxBh925aOdu5yvQnMyDNOaULakQODbKrPenWjsVlkHBH8g0unzim cBr2+RVMojQKi8apvwAObmwjLg/ZkiNGz1ffKtH4qgMIGD7fQOy0xioL2SaWJtEB97OwH+CJ /1eHOB9fDXg63/WtREeP7AGHJFslv1w5NYiRKLiFVRbj5Sh9AhWoLDi3Qmgol9zWNh/s9cPG qWIfRK4L2Ggr391mWjMkcp6BlSFceQ0PA3S4M3l8cEiNY4yj+V3QERjjpq2pyq0NSVkzTK1v STCRbPn8Oh57btShq7XS6BlKzypG4miStbS4ASXtvJQZ+juKubLjRse8XP8DjRVPJwQetV5r quMu9jJx3H4vK46fmTaupuZHYxbzJ+WcMsOFeyvN1hcvy+JePG00is542ridKB4yoJM1PeoV y6TSZWWd+dMf/x/2XcMSSxVMyhFOpTNdq26+B+M9aWdOCM8jz7CAsisr0LyTGdhcSQNBZ3yJ yn0t9uq5fFatI58PwAFNd43H65HJELfZoV+e+3TrTW4CkyasmGGsJbmljsi7mjFNCDVWoKyq 5fIXQP3exmOqbnFhoMR+ZB7uhoMSm1xm68sd0Ya4MR7kC2+EHVAF+kGLJEaEdtBp0QeDn0ji O3lNwPOyBkRXAiotT356dXnGwqdX6kAZou/KTsu8EeZLSyxAetsxVenGjhIux9LlvnLlYlL6 u3yPlX/OxGwxtdiQuN7CjmTn7J83v2Drp4X0RmVriExairyxZ0F0XVgGExGUimv/wQhUqnUD TBdeF2oi31XhaI8/QiMtpKV9NwkUOvT8ggV
- Ironport-hdrordr: A9a23:ifv8C6CTOp2zEorlHemb55DYdb4zR+YMi2TDpHoBMSC9Ffbo7f xG/c5rriMc7Qx6ZJhOo6HjBEDtewK6yXcX2/h1AV7BZniEhILAFugLhuvfKlXbehEWndQts5 uIHZIOceEYQWIK6foSIzPVLz/j+rS6GWyT6ts2Bk0CcT1X
- Ironport-phdr: A9a23:zBnRTRAsojjurbRyYxZBUyQUhUkY04WdBeb1wqQuh78GSKm/5ZOqZ BWZua8wygWWBs6LtbptsKn/jePJYSQ4+5GPsXQPItRndiQuroEopTEmG9OPEkbhLfTnPGQQF cVGU0J5rTngaRAGUMnxaEfPrXKs8DUcBgvwNRZvJuTyB4Xek9m72/q99pHNYwhEniSxbLF8I Rm5rgjct9QdjJd/JKo21hbGrXxEdvhMy2h1P1yThRH85smx/J5n7Stdvu8q+tBDX6vnYak2V KRUAzs6PW874s3rrgTDQhCU5nQASGUWkwFHDBbD4RrnQ5r+qCr6tu562CmHIc37SK0/VDq+4 6t3ThLjlSEKPCM7/m7KkMx9lKFVrhyuqBNxw4DafZ+bO+ZxcK7GYdMXR3BMUtpNWyFPAI6xa ZYEAeobPeZfqonwv1wArRqiCgmsHuzg1DtIjWL50qIk1eQhFx/J3BA8H9IPtHTUqNT1P7oVX OCwzanIzivMb+tI2Tjj7ojIdAssof6JXb1qcMrRzVMjGB/CjlWVsIHoOS6e2esRvWaB9eVgS f6vhHA9qwF3ujWix8gihIfXio8Xyl3J8Tl1zYUoKdGlSEB3fN+pHIVOuy+aK4Z6XMMsT3xnt SokzrALp4C3cSkWxJkk2RPTdfiKfo6V6RztU+aRJC13hHNjeL+niBay8FSgyu3hVsavylpFs i1FktzKu3sQ1BLT8tCKRuVh8kqlwzqC1ADe5vtaLUwplqfXMZEsz7EompYOvknOHjX6lFjqg KOLbEkp9fSk5/75brjloJKXKpV6hRvkMqs0n8yyGeQ4PRYKX2ic4em80afs/Uz9QLlTkPI2k LTVvInUJckUqaO1GQBV0oEk6xawCzepzs4UkmUALFJAYB6Hjo7pNE/SIP3gE/uzn1ChnC1oy v3GJLHtHIjBI3vZnLrucrtx80tcxxAyzdBb6ZJUELYBIPfrV0/0tdzYDQE2MxSqw+n5DtV90 JgTWW2KAqCDMaPStUWE6f4oI+mJfIMVvi3yJOA/5/HylX85hUMdfa6x0JcKcHy4BOhpI12FY XrwhdcMCXsFvgUkQ+zukVGNTD9TZ22uUKIh/TE7E5mrDZzDR4ComLyOxj23HpxQZmBcC1CDC 23kd4ueW6REVCXHKcBolnkIVKOqVpQ6/RCorg7zjbR9fcTO/ShNkJPo1NF446XtmBc0+CBoD sCZ0inZSmB3k3sWSjkw9K96qE15jFyE1P4r0LRjCdVP6qYRAU8BPpnGwrkiYziTcgfIf9PTD U2jXs3jGzY6CNQ4394JZU95XdSklBHKmSSwUPcOj7LeIpsy/+rH2mTpYd5nwiPD1aosl0crR M1nOmivh6o5/A/WVMbSi0vMr6+xbuwH2TLVsmKKzG6ApkZdBQtxUqjdQ30ZYGPZqN344gXJS Lr9Qa8/PF5nzsiPYrBPdsWvjVhCQ6L7P8/CZmuqh2qqLROBx7fJYYizPmtBgGPSD08Llw1V9 nGDXeQnLgGmpW+WTDlnFFa1Jljp7fE7snSwCEk90wCNaURlkbuz4B8cw/KGGbsV2foftSEtp i8Rfh711s/KC9eGuwtqfblNKdI77lBd0GvFtgt7dpW+JqFmj1Qafkx5pUTrnxlwD4xBl4Ato hZIhEJ3KKGVyE1McTWw0pX5O7mRIW73vViuZ6PQxlDCwYOO4K5coP88qljloESoDh94qyQhg 4QTiSLMoMmWX29wGdrrX0069gZ3veTfayg5vcbP0GF0dLOzuXnE0s4oA+0szlChec1eOeWKD lyXcYVSCs6wJegtg1XsYAgDObUY8a83Mtu4ev2A8KGuNedk2jmhiC4UheI1mlLJ7Cd6RuPSi twAwvKVxhWKUTHUg1Kos8SxkodBL2JaDi+0zi7qA5RUb6t5cNMQCGugFMaww813m5/nX3MwG EeLP1odw4fpfBOTawa4xghMzQENpnfhnyKkzjtymjVvr6yF3SWIzf6wPBYAP2dKQiFlgzKOa cCxjtMXRFalaQ4Bmx6s5EK8zK9e7KhyNGjcR05UcjO+dTkzFPvt8ODbM4gTtNshqm1PXf65Y EyGR7KYwVNSyC7lE2ZEhXg6ezysppTljkl/gWOZImx0qSmRcsVxyBHDod3EEKQJj3xWGW8i0 GmRWgTvWrvhtc+ZnJrCrO2kAmeoV5kJNDLu0ZvFriywo2tjHRy4mfm33NzhCwkzlyHhhLwIH W3FqgjxZo7z2uG0K+ViKwNtBVzx89R3HIdWnY45hZVW0n8fzMbwnzJPgSLoPNNX1LirJn8MR jMT3dPT5iDq3URiKjSCwIezBRD/ioNxItK9ZG0RwCc06ctHXbyV4LJzlixwulOkrAjVbKs1j nIHxPAp8nJfn/ARtV9n0HCGGr5LVxo9X2Skh1GS4tu5tqkSeGu/be36yh9lhd74RLCa/lMHB TCgK89kR3MvqJ04ag6E0WWvuN+4PoOLNpRK6EXSy1CZ3o03YNowjqZY23QhYDqn+yVjk6lh1 VRvxc3o4tbBcTk8uvLhREYfbGW9ZttPqG63y/8C2J/Hhcb3Wcwxf1dDFJrwEaD3THRL76mhb 0DWV2Ri4naDReiGRV/ZsRg56SKJS9fxbjmWPCVLlIo5AkDMeAoHxlhTBWtf/NZxFxj2lpa5I QEpu3ZIvA6+8lwVlappL0WtCD6B4lr4LG5lEt7Ha0MHpgBauxWPaJLYtLkiWXoCuMXm9V3oS CTTcQ1MCSthtlWsIVflM/Hu4NDB97LdHe+iN77UZr7Ir+VCVvCOzJbp0418/j/KON/ddn9lR +Y23EZORxUbU4zQhikPRioLlinMc9/TpRGy/Tdyp9y+9/KjURzm5I+GAb9fedt1/BX+jaCGP u+WzCF3TFQQnosL3mPNwaMD0UQ6jihvc3ygE+1Fu3KRCq3XnaBTAlgQbCYyfMpE4qQg3xVcb M7WjtSms9wwxvUxClpDSRnggpTzPZ1Mczz7bgqXQhrXZ9HkbXXRzsr6YL2xU+hVheRQ7Virv CqDVlXkNXKFniXoUBamNadNijuaNVpQotLYEF4lBG79QdbhchD+PsVwiGh8xLw3i2vUOGgaG Td5ekJJ6LaX6GkL55c3U3wE9XdjIeSezmyB6PLEL58NrfZxKiF9luYf7XZjjrUJsGdLQ/t6n CaUpdlr6QLD8KHH2n9sVxxArSxOjYSAsBB5OKnXwZJHXG7N4BMH6Wj44/siqN5sC9mpsKdVm IGnfEPbLT5D95fZ/5JZCZSIbs2AN3UlPFziHzuGVGPtqBakMGjegwpWl/TArhWo
- Ironport-sdr: 642ee7db_NnROm5iPSlrPKixI51J3jjdxvC/RfU9WOe/SGysVySzP0jL V0htnUJN8EdE6d4VqOo3TZCSVugHwH/j6ux0i9Q==
Hello,
I am finding a strange issue. I construct a pair of linear cell complexes, chull_lcc and shell. To compute chull_lcc, I randomly sample points on the sphere and compute the convex hull. For each triangle in chull_lcc, I create a vertex in shell at the triangle's barycenter. This proceeds for some number of iterations.
Basically, I am finding that the ordering of points within a linear cell complex depends on the compilation details (debug vs release), inside which function things are cleared (even if an empty object is cleared), and whether or not my code is run through Valgrind. All of this is done with a fixed random seed, and the set of points are the same regardless of the details, just their ordering is different. This makes me worry about potential memory issues later on. Is this expected behavior? Are there no guarantees about the ordering of points even when the random seed is fixed?
I have analyzed a lot of cases, but I think that going into detail here would make the email quite lengthy. Instead, I will provide a link to a repo containing a minimal example capable of reproducing the issue: https://github.com/MichaelVennettilli/Minimal_example_shell_error. The description explains how to run the script, how to interpret the provided data files, and environmental details.
I appreciate any assistance with this issue.
Thank you,
Mike
- [cgal-discuss] Inconsistent Ordering of Points in Linear Cell Complex with Iterative Refinement, Michael Vennettilli, 04/06/2023
Archive powered by MHonArc 2.6.19+.