Subject: CGAL users discussion list
List archive
- From: "蓝色追风" <>
- To: "cgal-discuss" <>
- Subject: [cgal-discuss] Question about intersection between two polyhedra using CGAL
- Date: Mon, 8 May 2023 10:10:12 +0200
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:qoKEzqK9qhnEscBYFE+RrJ4lxSXFcZb7ZxGr2PjLsTEN4o4QpzUDy GsfWx2FSviLYRf8c9gAdouyhD8DsZDRztZjSAJsrSkrV3RFwSauLYXDdxuoZ3OcdJ3KHUw6s 5oVOtSbfZtkRS7W/Uf2auC6pyZ2jq3XGrGsUrfPY30tHwE6Qylxhxg+lbVj3NMy3ILR729h2 D/Xi5S31AiNgmMtbTx8B9u/lS5SUNTOVBIw71ZnOa1HtgPUzSRKV80SLvjrJiHyE9EEF7XhG ezPl+iQ8zKC9X/BKPv1y+ehKhVirp36ZFXV1CIOA8BOpjAY+0TeB45ibKJ0hX9/0mnPxZYro Dl0ncTYYR8zOaHRk/gqXRBdEiVvVYVL47avzUKX6KR/9GWbNSq9qxlSJBtuZ9ZAp74oWTsmG cEwcVjhUDjT34pa/5rgEoGAtux7ROH3MYUWvG1XzD2xJZ7KlrieK0lizYYwMAYY3qiiL96GD yYqQWYHgCD7XvF6Egx/5KTSMwufriKXnzVw8Dp5rEesioTZ5FQZPLPFaLI5djEWLCn8c4nxS m/upgzE7h8m2NO3xR6e0C6Lucb0xxjRU58eMYSz+/NUqQjGroATIEV+uVqTpuSl0xDkHowFb hFEv3B39O43/U2vCMDkGRa/pRZovDZFBYAWTbd8tVHLkPONi+qaLjBsojppNYd67ZVvG2d7/ kaQ2djuAFSDtZXMESzNrurM/W/a1S49CFcwOXEAYBA82Zqz57FvgQzKDe9ND/vg5jHyMWqpn W/X9XRWa68opcUE3qH+8VHciC+3vbDSXwst70PWWHik50V3fuaYi5eA7kXHtKgaadjDCwTR+ SJdwo6b5eEKS4iU0ieKRY3hAY1F+d6JFCb+3XlQNqJ7zB6m5nKGRItd7Q9XcRIB3tk/RRflZ 0rauAV07ZBVPWe3YaIfX79dG/jG3oC9TY28BqC8gs5mMsYhKFTvEDRGPxb44oz7rKQ7uY0SU XtxWei2BHAZB7l90HK/Qq842L4trszV7T2LHsmgp/hL+ZqTf2WYIYrp3XOJc/xgsvnB/l+Qr oYabZLTjRBWUem4ezCR+okWRbzrEZTZLc+owyC0XrTfSuaDJI3HI6ONqV/GU9A795m5bs+So hmAtrZwkTITf0HvJwSQcWxEY7jyR5t5pn9TFXVybQ30iyR5O9b2vfd3m34LkV8Pq7QLIRlcE altRil8Kq0npsnvpGpGMcet/OSOijz62F3eV8ZaXNTPV8U5GVOUo4OMkvrH6CQIBSexqYM1p 7q92kvQRp8bWhhjCsm+VR5c5wzZgJTpo8orBxGgCoAKIC3EqdE2QwSv1aVfC59Xdn3+Ks6yi lz+7eEw/7ed+ufYMbDh2Mi5kmteO7EkTxYBRziDvd5b90DypwKe/GOJa87QFRi1aY8+0PzKi Tx9nqikYs4U1k1HqZR9GLtNxKczrYmn7bxDwwguWD2BY123A/kyajOLzOtehJ1rn7V5gAqRX l7Q2994Pb7SBtjpPmRMLyUYb8OC98oupB/s0doPLn7X2gpL7ZuccEALPxCzmC1Xd7R0F4U+w NYegs0d6i3hqx97a9qqo3px9jzWC31YCoIM7oA/PKL2gDUF0ltpPIzXMXL06svXavFnEEojE hmLjoXs2pVewUvjdSIoNH7vhOByu7UHiCpo/nQjeWubv8XjreAl+TFs6hE1c1hx4igf9twrI UltFUl+BZvWzgdSnMIZAlydQVBQNiOW6mna6gUvllSAa2KKS2aUDmk2GdjVzXAj62gGIwRqp uCJ+l3EDwTvUtr6hBYpeEhfrPfmc9x92yvClO2jHOWHB5MKWiXksID/eVs3rwbbPu1piH3lv eVK+MNCWZ//PwMUoIw5DNCU7qRPaRamIGcZf+pt0plUFk7heRaz+wO0FWaPRu13Kcfny3SIU /5VGpoXVjCV9jq/kTQANKtdf552hKEI4fQBSJPKJEkHkauUlWdrusiI9wzVpmwic/Nxm+kTd 6LTcDOjFDSLpH12wmXikuhNClCaU/IlOjLu+f+Ty/oYMa4Mq8dQSFEC6aS1tHCrLwdXxRKYk wfdbavwzeY564BTs6bzM6dEXSOYFMjSUbmWzQWNrNh+V9PDHsPQvQczqFO8HQB3P6MUautnh 4a2r9/780PUjokYC1mDtcG6KJBIwsGuUM58EMH9diBalBTffv7c2UII/mTgJKFZlN9Y2NKce DK5T8mOJPo1QNZWwUNHZxdOSyg9D7vFVYa+hCefgcnVND0j/13pENeV+0XtT1lnTQ4TGpinC gbLq/ekvd9Zi4JXBS47PfJtAr4mAVnNSY8jUcP7jhiDL2ySmljZkKDTpRkhzjDqC3e/D8fx5 6zedCX+bBifvKLpzslTlp5b5zk7LS9aqvZpWG4z9/pdqSGIPERfIcszaZw5W4xpyArs35TGV RTxRWoFCxSlew9bcB/5se/Rbi3GCsMgYt7GdyEUpWWKYCKLBaSFMrtr1gFkx1xUIjLD7uWWG esyy03KHCqa489WHL4Ix/mBn+1Y6OvQxSsI9WDDgsXCOUsiLotQ5kNxPjhmdHLhI5jBmnyec CJxDSpBTVqgQEH8Ldd4djQHUFsFtTfo1HMzYT3J3N/bvJ6BwfZdzOHkfdv+yaAHcN9AMYtmq akbnIdRyzv+Nr0vVaoVVxYBhrJoUKzRW5bgafKzAFdLxue142Ujedob2yEISanOPeKZ/0z1z lGRD7oWXSxp63y9HJWP0EMC/JcZvrckEWTSlACmzdPZuUVR8jUaEiRGCCriMNf7rK2LU4C0h tsNRB75nmB6fwcIadWzWjr3a7BH7Qws+aH4bx0V
- Ironport-hdrordr: A9a23:eot5xKOC5oUS9MBcThajsMiBIKoaSvp037BN7SBMoH1uE/Bw8v rEoB11726WtN98YhwdcLK7Scy9qALnm6KdiLN5VYtKNzOIhILHFu1fBPPZslrd8lbFh4xg/J YlS5A7LP3VITFB/KLHyTj9K+5l5NGG9ayy7N2uqUtFfEVTU+VQyy9YLya9PWsefmN7LKt8LK LZ4spLzgDQAEgqUg==
- Ironport-phdr: A9a23:HWojoRSfQc/OikGv5f1JdvPlltpsoreVAWYlg6HPa5pwe6iut67vI FbYra00ygOTAMOAsK0P0rCG+4nbGkU+or+5+EgYd5JNUxJXwe43pCcHRPC/NEvgMfTxZDY7F skRHHVs/nW8LFQHUJ2mPw6arXK99yMdFQviPgRpOOv1BpTSj8Oq3Oyu5pHfeQpFiCS9bL9oI hi7owfcusYLjYd8Kas61wfErGZPd+lKymxkIk6ekQzh7cmq5p5j9CpQu/Ml98FeVKjxYro1Q 79FAjk4Km45/MLkuwXNQguJ/XscT34ZkgFUDAjf7RH1RYn+vy3nvedgwiaaPMn2TbcpWTS+6 qpgVRHlhDsbOzM/7WrYjdB+gqJFrR64vhBy3YnUYIeJNPVgeKPdYc0URGpZXslPSSBKH4ewY oUTA+YEO+tTsovzqEYUrRamBQeiGv7hxTBUiXH506M0yecvHwbd0Qw6HdwDqm7Zoc/pOKoQV +2+0anGzS/Eb/NTwTrx5o7KcBYno/OKU757bM3cxEkhGg7Kk1mct5HpMjKb2+kJqGWb9vNgW fizhG4grgF8uz6izdojhYfVnIwa0EzE9Tlnz4YvI921UEF2bN6kHZZTqS2XN4t7TMM+Tm9ot yg3xbIItYO4cSUE1ZkqxQLSZ+KHfoWV4R/uVuWcLDRkiH94eLyxhxi8/FWmx+bhVce0yE5Ho jdEn9XSrHwA1gLf5tKHR/Z+5EutxyuD2x3V5+pZO047j7DbJIQkwrMolpocr0DDHijulUXxk a+Walgo9+m25+j+Y7jquIaQOo93hw3nLKgih9GzDf49MgcUXmib/f6w1KT6/UHjXLpKifg2n rHYsJDcO8sbura0DxJU34o98RqyDimq3M4YkHQENl5JZg+Lg5XxN1HLOv/4DPO/g1q2kDdsw vDLJr3sD5vCI3TejrvtYLdw5kBYxQco1NBf/ohYBa0GIPL2QkPxssfXAQcjMwOo2+bnFMl91 oQGVG6SGqOZKr/dsUeU5uIzJOmBfJMauDnnJPgh/vLhkH45mUQBcqm0xpsXc2u1Hu9mIkWce XrjmM0NEWYMvgokTezlkkeOUTBJZyX6Y6VprDo0AYbjAYbYTZ22m/bJiCy0F5kTamFdAU2XC l/pcZ+FUrECcnTBDNVml2lOrUBZs8VpgUz16FagkuQ8f8LN42sTspe1h4s93PHaiRxnrW88N M+ayWzYFDkcdgIgQjY32Po6uklh0hKZ1qM+hfVEFNtV7vcPUwEgNJeawfYpQ8vqVFfnedGEA E2jXs3gGSs4G49qn4ZUOhgmSv27l1bI2C/5S6QNmemzDYcvurnZw2C3Is98z3jc06x00gJ6G 5EWazb3rrdmsQPUAt2BiF2XwoCtc6lUxyvR7CGDwG6J6VlfSxJ1WL7ZUGo3YVbK9Iqjox2YC uL+TO5+a01EwM+GbLJTLNbuiD2qXd/FP9LTKyK0kma0X1OTw6+UKZDtcCMb1TncD04Nl0YS+ 2yHPE4wHHXppWWWFzFoGV/1BiGkueBjtHO2SFM1xACWfgVg0bSy4Bscmf2bTbsawLsFvC4rr zg8Eky62praDN+Jpgwpe6s5A5t1vQwbjDiA6VcsFoW5aatlgx9Wcgh6uV/vywQiEp9JwoAhq HInyhY3KLrNiQ0bMW3Cm82gfOeOczqXnljncaPd11DA3czD/64O7K59sFD/pESzEUFk9Xx70 t5T2n/a55PQDQNUX4iiNyR/vxV8ubzeZTEwoo3O0ng5e/Tv7maYgoxyVcM801CreNIVY8bmX EfiVtYXAcSjMrlgxgP1N0hdYrsD3LctecihcrHVkL7uN+FmkjW8iG1B640oyUOA+R13TevQ1 ooEyfWVtueefw/1l0zp8sX+mIQeICoXAnL60y/vQohYeqx1e48PT2aoOcy+gNtk1dbhXHtR9 VjrAF1juofhJEHONgakg1YB/V0O53egnGO0wid1nDcgsqeElHWQmaK8LlxaaigRHTAqhEykO YWuitEGQEWkCmph3ACo40r33ekTpahyKXXSXVYdeiH3K294Va7j/rGGYsNJ9NYpqXAODr76P wrcF+67+UJDgEaBVyNEyTs2di+noMD8lh1+0ieGKWpr6WDecod2zAve49rVQbhQ2CAHTW92k 2qyZBD0Mt+38NGTj5qGvPq5UjfrC8YPKHOyk9jRnDKio2ZtBFfs+pL70s2iCgU83SLhgpM3D nmR9k+iOdjDzr38OuViNBogFBr37Mx0HZt7m407icQL2HQUsZ6S+GIOjWb5NdgIvMC2JGpIX zMAxMTZpRT0wEA2ZGzc3Jr3Dz/OitskfdSxZXkanz4w/9wfQrnB96RKxE4X6hK5tV6DOKAk2 G1Hl713sy9c26ZT5UIs1nnPW+hLWxgBe3C30UzPtY32rb0LNj/3KP7hjQwiwZb4VuHF+Fw5O j6xe49+T3YptIMhbBSWiyK1s9u0P4ONJdML6k/NykmG1rIFbstuzbxSwnA6XAC19Xw9l7xi1 0UogMj84NDBcj89u/jkSh9Aam+sPZpVp2ir0+AG2ZzLl4G3Qsc4RG9NAsGuEKjuSmtO0Javf weWTG9l9C3dR+CZQFLZthgurmqTQcn1bTfJfj9EkpM6A0PBbE1H3FJNAm98wMR/S1DsnpW4F SUxrjEJugyh9EEKlLguakm5CD6B7EKhbjN+IHSGBDxR6AwKp0LcMMjEq/l2Azkd5Jqq6gqEN m2cYQ1MS2APQE2NQV75bPGo4pHb/u6UC/DbTbOGaKiSqeFYS/aDxI6+mopg8TGWM8yTP35kR /Ql00tHVHp9FozXgTIKAyAQkivMaYacqnLesmVvqduj9f3wRA/1zYySF+IMa5AxoVXr0eLZb rfWgS94LXBBz9UHwnqJgLkT0VgOij1/IjmgFbNT0EyFBKnUm6JRE1sac3YqapEOsfh6g1kLY 5eC2baXnvZig/U4CklITwnkk8CtP4kRJn2lcUnADwCNPaiHIjvCx4f2Z7m9QPtelrYx1VX4t DCFHkvkJjnGmSPuUkXlbLoQ1XvCYkcPkJikNB1qDCKwKbCuIg3+K9JxgTAslPcsgWjWMGcHL TVmW0RQsuTOt2YG2LAiSykbtyMjKOCFn2CA9q/TLZNc4p4JSmxk0uld5no90b5c6ipJEed0l CXlpdlru1i6k+OLx1KPsTJJtyoS2tjO4x8nZPWcrMAZH3PN/RZL9HzWABMP9YMN4jLHorkWw d/KxvubwNJq6suS9swZVZC8FQ==
- Ironport-sdr: 6458ae6c_8bTTrIkEp0pIbMS13mEKJU0+sGA24Tq7v/MNIgDtkBxpjQh bVq+UY19TJTQRG8LJtYCh2DOOuwtY5BJdxvKBhA==
Hi, all,
I am currently working on computing the intersection between two polyhedra using CGAL. Since the polyhedra are not convex, the intersection results in two disjoint polyhedra, as shown in the attached figure. However, when I used the NefPolyhedron Boolean operations, it only gave me one NefPolyhedron.
Thank you very much for your assistance.
I am interested in computing the center of mass and volume of each of the resulting polyhedra. Therefore, I would like to ask for your help in splitting the NefPolyhedron into two disjoint polyhedra. There are very few online codes on this topic, so I would appreciate it if you could provide me with some sample code to achieve this.
Daye
- [cgal-discuss] Question about intersection between two polyhedra using CGAL, 蓝色追风, 05/08/2023
- Re: [cgal-discuss] Question about intersection between two polyhedra using CGAL, Sebastien Loriot, 05/09/2023
Archive powered by MHonArc 2.6.19+.