Skip to Content.
Sympa Menu

cgal-discuss - [cgal-discuss] Curve Fitting on a set of points in 3D

Subject: CGAL users discussion list

List archive

[cgal-discuss] Curve Fitting on a set of points in 3D


Chronological Thread 
  • From: Calvin Lim <>
  • To: "" <>
  • Subject: [cgal-discuss] Curve Fitting on a set of points in 3D
  • Date: Wed, 13 Sep 2023 02:23:06 +0000
  • Accept-language: en-US
  • Arc-authentication-results: i=1; mx.microsoft.com 1; spf=none; dmarc=none; dkim=none; arc=none
  • Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=IpNisIr3s3y/jUJ7P9NiYMwo9+Z7bkbD8FM0Or7cBgM=; b=XEKtZW45pZx+fjAPrZjnaFQopk/dk4ln5ye6eXflKNrKehJVCDxOuxlMmJrpO0Cq5tSO6bkwUn6KvXebMEmBbSzAl4wTQJUGdthihFzD3SVlvdqsFE5+Itr51OUAebyBq6e2ykIkC6XRJhO64kwRe7XrnBBmlpAvcjeyLz91CplePNEit9KsIXZBfuVrUkOQtfO6kq+kGmdiQPcQrbbdv/TlU0shVxPMfMBVX6D9ZoAIygb9p96RGE/lhI/1u8j5eKFwrMA4VsjmOzNVXd3N2AX4/FC2nCskZc0A+FICllTLKJT5W0WHXwvU1FyJzk9AR7px2/FS2IZXEcARiFlG1w==
  • Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=JWPsingIGSOoXaKAyTCG9FN2XWCmX/bM+150SdEpQB2hteRrq+pTkRON4eha6JVoUU4TqDKhwhS7wIrKvHkFc9NKDvGlji7Wyc2ziHlnHwTB+c8y1APfMqs8b4gk17M88h0QlKcgtBx8gHk1en7Pq0Go5Kgi15uNTXO/I9HzKxYyssBSp2vI9vguvrK72kuTwSQ5tFkjF8up+jxp3wcRD8vTEa9Wg4zjP8/ZBo0mvUh+nKNBwqNRXXSXSLEUgtwoFNOh2f86ouhRW2kcrNIPTn2w21ryZjbHSrJwGxVKRs2pY3ZslxIjx5wNt7LnGQda5aRwmIABb7w7Ehmx/5mctg==
  • Authentication-results: mail3-smtp-sop.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
  • Ironport-data: A9a23:NMqMzaJqnu4lO92cFE+Rs54lxSXFcZb7ZxGr2PjKsXjdYENS1zwCy 2YeXjqHPquOYGujL95wYYu3/U4Ov8DWzoUwTFAd+CA2RRqmi+KVXIXDdh+Y0wC6d5CYEho/t 63yTvGacajYm1eF/k/F3oDJ9CU6j+fSLlbFILasEjhrQgN5QzsWhxtmmuoo6qZlmtHR7zml4 LsemOWBfgf/s9JIGjhMsfnb+Uo05K2aVA4w5zTSW9gb5DcyqFFOVPrzFYnpR1PkT49dGPKNR uqr5NlVKUuEl/uFIorNfofTKiXmcJaKVeS9oiY+t5yZv/R3jndaPpDXmxYrQRw/Zz2hx7idw TjW3HC6YV9B0qbkwIzxX/TEes3X0GIvFLLveBCCXcKvI0LuT1+26rZsS2IPHowgoNlzCGpEz +EhAWVYBvyDr7reLLOTbMBJ351mB+6yeYQVtzdn0C3TCusgTdbbWaLW6NRE3TA2wMdTAfLZY MlfYj1qBPjCS0EXfAZNTstu2rv57pX8W2UwRFa9rqMz/WnV+wdu+LjqLN/ce9jMTsJQ9qqdj jyboDWpX05GXDCZ4WXazW2TtLHGpi7EY4wMSqLh3b1RrVLGkwT/DzVNDADg+aDj4qKkYPpUJ EUQvyYvtqMv71eDVcj4RxT+oXievxdaVcA4LgEhwASEy66R6AHAAGEBF2dGbN8g7pdqFHoty 0ODmM7vCXp3qrqJRHmB97CS6zSvJSwSKmxEbigBJecY3zX9iL0X1DuMTJFAKY20tofKHTj7y QqXlQFr0t3/kvU3/6m8+FnGhRelqZ7IUhM5623rsoSNv1sRiGmNN93A1LTL0RpTBNrGEAHa4 BDoj+DbtbpUVs3UyERhVc1UROnxj8tpJgEwlrKG83XMB12QF5OLeIlR5HR1Ix5vO8NdIDjtY 0mJ4V8AophOIHGtcKl7JZqrDNgnxrThEtKjUe3Iat1JYd56cwrvEMBSiay4gDmFfKsEy/lX1 XKnnSCEUSxy5UNPkGHeegvl+eV3rh3SPEuKLXwB8zyp0KCFeFmeQqofPV2FY4gRtf3V/FiJq IoEbZXVlH2ztdEShAGGqOb/ynhbdRAG6Wze8ZE/mhOrflU+Rjl9V6C5LU0JIdc1wvkK/gs3w p1NchQBkwGn3CevxfSib3FocrT0Wphj5XspIDYhVWtEKFByCbtDGJw3LsNtFZF+rLIL5actE 5EtJZ/catwREW6v02pGMvHAQHlKL0nDafSmZHb+P1DSvvdIG2T0xzMTVlGzq3ZXUnbm5JRWT n/J/lqzfKfvjj9KVK7+AM9DBXvo1ZTEsLMuARn7MZNIdV/y8YNnDSX0g7Vla4sPMBjPjH/Sn QqfHR5S96GHrp4X4ev5o/mOj76oNO9iQWtcPW3QtoitOQfgo2GM/I5nUcSzRw77al/awquZS Ntw8+DdK9wCxVZDjJp9Ge1kzIU4/NremIVZxQVFQlTIMn6XNp5wBkSg5ex077N8w4JEs1CIA nOKq4BQPIyUM+PHDlI+GggpQeCd3/BJhDXi1+8/ehTgwCpR4rC8cF5zOiOUg3d3N4pFM4ICw MYgtvUJ6ge5tAEYD9aegg1Q9EWONnYlQYx+kr07WajAlRsN2FJZRJ7TGB/N/5CEbutTPnkQI jO7gLTIg5JezBHgd0UfOGfs3+1Po4YnozFPkUE/ImqWlur/hvMY2ANb9RI1RF93yjRFy+dCB Xh5BXZqJKmh/yZau+YbZjqCQzp+PRy+/lD973Arl2eDFkmhaTHrHV0HYO2I+BgUznJYcj1l5 4qn8WfCUwi7WOHq3yA3Z1xplOy7c/x16T/5uZ6GG+arIsAERATL046US0gGkR/FOf8KpVbmo LBq9dlgaKegOi83pbY6Orag1r8RaU6lIWxcTd44/Ko2AnztImCu+DmRKnKeftFGCOzK/HSZV e1vBJNrfDav2Bmeqgs0AfY3HIZ1u/oy9fw+dajON0dfl5e+9R9t6Inx8Ar6j08VG+Req943c N7tRmjTA16uimtxsE6TidtPJU6TQ8QOPS/418CLqNQ5LYoJ6rxQQBtjw4mPniunNSV89Eipp yLFXajdytJixalKn4fBFqZiBR2+GejsVdanoRyCjNBTUezhacv+lRsZil3CDTRkObE8X9dWl 7PUvuXng2LDnrI9CF7Cl7e7SqJm2MSVXchsCPzREkV0pyW4ZZLT00MxwFzgcZ1tu/FB1/ajX Dq9OZeRd8ZKetJzx091Sil5EjQaAf/NcpbfoTiZqtKSACM8yi3CFsusrlXyXFFYdwgJGpzwM RD1sPCQ/eJlrJxAKRsHJvN+Cbp6HQPHdY45UebupB+KLGWMqXGTiIvIzBYPx2nCNSiZLZzc/ 5nAeCnbSD2zn6Ptl/RyrI14u0wsPkZX2OUfUBoUxI9rtmqcEmUDEOU6NKcGALFylgjZ9snxR BPJXVsYJRTNZxZ2WjSi3427RSaaPPIEBfnhLD9w/0+0VTa/NLndPJRfrBVf81VEURq96tH+J d8nryi6elD7x5xyXu8c68CqmeotlLuQ2nsM/lu7iMDoRQoXBbIRznF6AQ5RTmr9HtrQkFnQb 30ALYyerJpXlWateSqhR5JUJP3dlBXG6mxxKAyomZPYsYjdy/BcwvriPe21yqcEcMkBOL8JQ zXwWneJ5GeVnHcUvMPFfvo31LRsB6vj8teSdcfeqc86xslcKVjL++sCmjYKRcAmvgVYFjsxU xGytmMmCh3txF95gdWrJMZgx361enILEzTAjQq5rjjD+fD8Ix41ZDDypD/GxVrMR2QPcqmWr Pr+rKpcnrFOiAbZmA==
  • Ironport-hdrordr: A9a23:6iX7PqAD8QWo41flHemh55DYdb4zR+YMi2TDtnoBLiC9F/bzqy nApoV56faZslYssRIb+OxoWpPwI080nKQdieIs1NyZLWzbUQWTXeVfBEjZrwEI2ReSygeQ78 hdmmFFZuHNMQ==
  • Ironport-phdr: A9a23:5X2xJBCY3rSXjrbCHWI6UyQUQEsY04WdBeb1wqQuh78GSKm/5ZOqZ BWZua8zygaXAs6GtLptsKn/i+jYQ2sO4JKM4jgpUadncFs7s/gQhBEqG8WfCEf2f7bAZi0+G 9leBhc+pynoeUdaF9zjaFLMv3a88SAdGgnlNQpyO+/5BpPeg9642uys+pDfeRhEiTu/bL99L Bi7rxjau9ULj4dlNqs/0AbCrGFSe+RRy2NoJFaTkAj568yt4pNt8Dletuw4+cJYXqr0Y6o3T bpDDDQ7KG81/9HktQPCTQSU+HQRVHgdnwdSDAjE6BH6WYrxsjf/u+Fg1iSWIdH6QLYpUjmk8 qxlSgLniD0fOjA57m/Zl9BwgqxYrh29qBNy2JTbbJ2JOPdkYq/RYc0WSGxcVchRTSxBBYa8Y pMRAuUbOeZYsYj9p10TphW4BAmsAf7kxzhUiXDs2a06zeUhEQfe0wM8EdMDq3TUrNLpNKcXS ++1za3IwS/fYPNR3Dfw8Y7FeQ0urv+QR7x/a9bRyVUxGAPfiFWdsY7oMTya2+kDr2WW7u5tW +KthmI7qw98pjihytsih4THmI4YyV7K+CFlzIooJ9C1VEp2bcClHZdMtiyUOZd7T8MkTmp1t ig6zbgGtoS6fCgM0Jknwh/fZOCdc4iP+RLjU+iRIStiiH15f7K/ghC/+lWjxO3kTsS530pGo jBBn9XSrHwByh/e5tKIR/Z55kutxzeC2xzd5+xBPEw4ibHUJp8kz7MzipYesEHOEjLql0rti aKbc1go9+iu5u/6eLvpvIWcOJVxigzmMqQhhMi/AeMgPwYWQ2WV/vmw2KD68UDnWbtGk+Q6k q7Cv5/EP8gbobO5AxNO3YYk9ha/CSqp3M4AnXkdK1JFZAyIgJT1O1HPJ/D4C+2zg1OxkDd3w /DGObrhApbXInffl7fheK5x609ayAUt0dBS/51ZBq0bLP/3REP9rsHUAxwjPwG7x+vrENB92 ZkfWWKLDK+ZKqTSsVqQ6+0zOeaMYJEVuDf7K/c9+/Hvg2Q0mV8afam12JsYcnG4HvB8L0qFZ nrsh88NEWERsQUmVuzllEWCUSJPZ3a1R68w+yk3CJi6AofbWoCtnLuB0T+nEZ1ZfG9GDkmAH mrpd4WfR/gMdTmSItR6nzwfVbmhTpch2gu0uA/7zbpnNOvU9TcCuZLtztgmr9HUwFs5+jVwS sicyGqQVHpcn2USRjZw0ro16Rh2xV6HlKR5mPdFDsd75vVTUw58O4SKnMJgDNWncQvFYNaPA HKnR53yCjg1UNM39NQRS0Z6B9CrjxSF1C2vVexG34eXDYA5p/qPl0P6INxwni6uPMgJilAnR pAKLmi6nutk8BCVAYfVkkKfnqLsdKIG3SeL+n3QhXGWshR+Vwh9Gb7AQWhZflHf+N/w4l3DS YilFpwnNRdEwM+GbKBNb46hlk1IEc/qI8+WeGetgyG1DBeMyKmLad/hcmED3SPqA1cskwcP+ H+HMU41ASLy63nGAmlWHEn0K1jp7fE4qH6/SRosyBqWakR6y7ev0jg8oKXFDtg0h/cDsipnr ChoFlGg2d6QE8CHuwdqYKRbZ5U6/UtD0mXa8Qd6O/RMNohEgVgTO0RytkLqjFBsD5lY1NMtt DUsxRZzLqSR1BVAcSmZ1Nb+IO+fLG665x2pZ6PMvzOWmN+L5qcC7ug5oFT/rUmoEEQl6XBuz 9hS1TOV+JzLCAMYVZ+5XFww8lB2oLTTYy914I2xtzUkOqCwrD7E7Nk2LOsi1hOpftMZO6SBV UfzH8AcG8myObkygVH6JhkAPe1U6Os1J5b6L73XgujybKA8zWHD7ywP+o1230OS+jApT+fJ2 81A2PSExk6cUC+6il69s8fxkIQCZDcIH2P5xzK3YewZLqB0Y4sPDn+jZsOtwdArzZXkX2BZ8 mmoGHsG39OscBuWKVf62EcDsCZf6Wzigia+wzFuxnsip66B3Sr5yPvKdB0bP2dKQC9pilKmc u3Wx5gKGUOvaQYujh6s4033krNaqKpIJG7WWU5UfiLyIgmOS4OIv6GZK45K4ZIs6mBMVfikJ EudUvj7qgcb1CXqGy1fwio6fnekoMexkxt/gWObZHF9yRiRMcp5wQne4uvXWtZR2SYDTSh8z zLQAxCwMsKo8tOdi5rY+rzmETP7EMQDN3W6hYqb/DO2/2hrHQGyk5XR0pX8HA423DW6n9hmW CPUrQrtN4zi1qC0K+ViLQFjAF7x7dY/G5krztN21ctWgChc2sTGmBhP2X3+Othax6/kOX8ER DpQhsXQ/BCgw0p7aHSA24P+UHyZhMpnfdizJG0MiUdfp4hHDrmZ6LtckG57uF29+EjaaPxjn zEqwuQG6HkGhugIvEwmySDXUdVwVQFIeDfhkRiF9YX0p6xTemepRrOv/Ep5gdWoDbXEqQZZE iWcGN9qDWp76cNxN0jJ2Xv459T/edXeWtkUswWdjxbKi+UGYIJ0jPcBgjBrfH7spXBwgfBul gRghNvp2erPY3Uo5q+yBQRUcyH4d99GsC+4lr5Qx46Xx9z9Q88nQ21QGsOuFbXxT3oTrai1a 17IQWd68jHDXuOBeG3XoEZ+8yCWS8ztay7RfiFflZI4H1GcPBAN2VhIGmll2MdhRkbyg5a6O EZhumJIvgK+9kQKlb8ub16lDgK97E+pcmtmEcDDakYJqFwZoRqNdpbCpuNrQXMC98X4/lXUc z6VO1wQXzNOBhzhZRirP6Hwt4PJq7HKX7PnffWSOe7c+6sCBr+J3cz9iII+pmTVb5zdMCU6V K9rghIbDyI+Rpy8+X1HSjRJxXjEN5fJ/U7lqCMr9pvt+6yzAFC9otbWQ7pKb4c18kjv0/7ab rye2H4iezgAjstelziVkvBa1VoWwUmCbhGVGK8b/W7IRaPUwepMCgIDLjh0LI1O5r492Q9EP YjajMn03/h2lKx9B1BAXF3n0sanAK5Ca3m6L0/CDV2XOa6uAxTumpiySoTlDLpagaNTqgG6v iudHwn7JDOfmjL1Vhepd+ZRkCWcOx8Ys4a4F3QlQWTuV9PpbBSnPcQ/0WVwkOdy3yOMaT9UO CM0a05Xq7yM8S5Uyu5yHWBM9DstLOWJnTqY8/iNKpsStqgOYGw8nOZb7XImjrpNuX0cAq0v3 nKC6II/8DTE2qGVxzFqUQRDsGNOjYOP5gB5PLnBs4JHQTDC9Q4M6mOZD1ILocFkA5vhofM1q JCHmaTtJTNF69+R89EbAp2eI8uDLnsnBhH2MD7TEA4MTDrtPmbazR848rna5jiOo542p4K50 oIJUaNeXUcpG+kyLG1ARYVHC7AuGzQunPickdIC4me4oF/JXsJGs5vbV/WUR/LyNDKeiroCb BwNi+CdT8xbJsjw3EpsbUN/lYLBFh/LXNxDlSZmaxc9vERH9HUtBn12wU/ubRmhpWMCDfPh1 ABjkRNwOK5+kVWkq0dyPFfBozE81VU8icmwyy7Eayb/de+xRd0EV3Ky5hJ3atWjBF8oJQyqw R44bHGdH+0X1/04Mjk17W2U8ZpXRawBF+sdOEdWnbfPIKx0mVVE9nf+nRMBubSDUd0601J1O Z+08SAa0lo6PodsfP7eePIRnAoX2vLr3Gfg1/hvklUXfx9fqTrLKiBU4BdaZP56dmKp5rI+s wXawmkaITFeWaZy+aA6rhtlabbHknqFsfYLK1jvZbaWd/rL4jGZx8DUGghi3RtQzxsXuuUvm cY7LRjOXhh2nuLITkYHaZKZew8NN5IApj+OJ27LuOHJi/qd0K29EfztRO6K8q0ThxD9dO7IN 6Ily51YW7KLiQTfJ8qhK6MZwxIw4gitPE+CEPlCZBOMlnEAvt27y5h0m4JaI2NEaY2YGSWw+ rPepwtsi/2GDo9eXw==
  • Ironport-sdr: 65011d0f_9zHLah7iXTPfXNSmsMgAIVtcexLeHXfhyBPGwKA/9Y2DFiX 5hRSpn3vVsTzSGTu0j8mb8NZDmOmgUWBtAIeYEA==

Hi there,

 

             Are there any functions in CGAL that can perform curve interpolation on a set of points in 3D? Can be a spline, Bezier curve, polynomial function, etc.

              Many thanks for the help in advance.

 

Regards

Calvin

 

Sent from Mail for Windows

 



  • [cgal-discuss] Curve Fitting on a set of points in 3D, Calvin Lim, 09/13/2023

Archive powered by MHonArc 2.6.19+.

Top of Page