Subject: CGAL users discussion list
List archive
- From: Matthew Hall <>
- To:
- Subject: [cgal-discuss] Insert unbounded curves into arrangements
- Date: Fri, 8 Mar 2024 13:12:10 -0500
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:lQAInKn6J2RLPLGNt/FtQcbo5gx8IkRdPkR7XQ2eYbSJt1+Wr1Gzt xIdCzuGPayPYmLyLo9/aty1oU8Ov8KByNRgGws9rys1RVtH+JHPbTi7BhepbnnKdqUvb2o+s p5AMoGYRCwQZiWBzvt4GuG59RGQ7YnRGvymTrSs1hlZHWdMUD0mhQ9oh9k3i4tphcnRKw6Ws LsemeWGULOe82Ayaj18B56r8ks14Kyp4GNA5TTSWNgS1LPgvylNZH4gDfrpR5fIatE8NvK3Q e/F0Ia48gvxl/v6Io7Nfh7TKyXmc5aKVeS8oiI+t5uK3nCukhcPPpMTb5LwX6v4ZwKhxLidw P0V3XC5pJxA0qfkwIzxWDEAe81y0DEvFBYq7hFTvOTKp3AqfUcAzN1/M1w0MrIovd9cLk8Vr fwnORNRSSm60rfeLLKTEoGAh+wmJcjveY4T4zRukWGfAvEhTpTOBa7N4Le03h9q3pEITauYP ZJJL2Y/BPjDS0Un1lM/DZsigOelmT/lNT1RrFa9ua0t5G7PywlslrPkWDbQUoXXGJoKxB/B+ woq+UzGWD07Bcyc8wG63Srr2v+MwwXHB7IrQejQGvlC2wDKnjNCVnX6T2CTqvawjguyWslUN lcP0jE/qLA7sk2tVNj0GROiyENopTYZUttUVuA2sUSDlvqS7AGeCWwJCDVGbbTKqfPaWxQ76 UKLkOzZQgVEn5POEXKi55TIigqLbH19wXA5WQcISg4M4t/GqY41jw7SQtsLLEJTpo2lcd0X6 2DaxBXSl4kuYdg3O7JXFG0rbhqpr5nNCwM5v0DZAjLj4QR+a4qoIYev7DA3DMqszq7IETFtX 1BdxKByCdzi67nTyERhp81TQdmUCw6tamG0vLKWN8BJG86R03CiZ5tMxzp1OV1kNM0JERewP xeC6VgPvsEJZCD6BUOSX25XI5R6pUQHPYS1Ps04kvIXP/CdiSfeoH80Px/PgQgBbmB3yPFmZ v93jvpA/V5BVP0/k2voLwvs+bAswS86yCvSQ5u9pylLIpLPDEN5vYwtaQPUBshgtP3siFyMr 753aZHWoz0BC7aWSneMoeYuwaUidydT6Wbe8JwJKIZu42NORAkcNhMm6el9JNI/w/gOz7agE 7PUchYw9WcTTEbvcW2iAk2Popu2NXqmhSNkYX4fLhyz1mI9YI2iyq4aetFlNfMk7eFvh7o8B fUMZ8zKULwFRyXl6gYtS8D3jLVjUxC32iOIHS6uOwYkc7BaGgfmx97DfynUzhcoMBaZj8UFj oeb5lvpeqZbHwVGJ+TKWc2r1GK07CQ8mvotfk7mIetzWUTL8aoyIXfTkPUxGd8GGSje92G31 iK9IxQRlc/SqaAbrfjLgqGlqd+yMu1cR0B1IUjS3YyUBwL7oFX6mZRhVsSMdhDjDFLEwr2oP 7hp/qutIc85k0ZvmKsiNbRSlIYVxcbl/p1exSRaRET7VUyhUO5cEyPXzPt0l/N/w5FCslGLQ WOJwN5RPIuJNO7DEFI8IAkEbPyJ5coLmwv9vOgEH0Hn2BBZpLa3c11eHx2puhxvKLFYNIAEw +B4nOU07we5qAQhM/fYryRy2lmPEEc9UPQchslHOLPotwsl8UEdQJr+DiSt3oqDRe8ROWYXI xiVppH4uZJi+mT4fUEeK13xzMtGpJFXuBl13F4IfFuIvdzeh84I5h5a8BVpbwEMzhx4zP5BB VF7E3JEfYKlojFi3plFVU+RBjAbVQG4+1Pw+XQNhmb2X0mlbU2TDWwfaMKm3lEVzHJYRRdfp Iqn8WfCVS34We3AxQ4wZBJVkOPiRtlP6QHyosCrMMCbFZ0cYzC+oKuRSUcXihngW+UduVbmo LR0weNOdqHLDy4cjKklAY28175LahSlJnRHcM5x7pEyAmDQVzGj6wegc3nrVJt2GMXL1kukB +hFBMFFDU2+3RnTiAErP/cHJrsskcM54NYHRKjQGlcHlLmitRtsjoPb83nvpW0sQug2q/0HF KHqS2ugHFCT1FxuoE2ciOlfO2G9X8sIWx2k4sCx79cyNswitMNCTBgM94Wa7lupNDlpxRa2h D/4RrT3yrViwLt8noG3HaRkAR61GOzJV++J0V6Ste5QZtaeLMvh5h8ZkQTlDj93JpoUYcx8z p6Wge703WTEnbc4aH/YkJ+/DJt05d2+ce5UE8DvJklhgiqJXfHz7ys5+2yXLYJDlPVf7JKFQ zSURdSRd9lPfftg31xQNjZjFigCB5TNbqvPoT23q9KOAEM/1S3FNNaWym/7X1pEdyMnO4zMN SGsgqyAvutnlYVrAAMII9pEAJUieV/qZvYARu3L7DKdCjGlv0OGtr7cjiEf0DDsCESfMcPE8 JnAFwnfdhOzhfny9+tnkbdO5z8ZMHUsptMLXBMty4YjwXTyRmsLNv8UPpg6G4lZ2H66no3xY DbWKnAuE2PhVDBDag/x+8nnQhzZPOEVJ9PlPXY8yit4sctt6F+oW9ONNxuM4kuavhPmxeCjb NwSozj+Ykj3zZZuSuIeoPe8hI+LAx8cKm0goSjAfw7aWn7ywonmEFR9GxBKUzDAFtyLn0yjy a0dWzVfWE/iIaLuOZ8IRpOWcS31eBvzyC8vazuIxcuZsIzzICisDhHgE7mb74Dvp/jm6FLDq b0biodND62rNqQvhJYU
- Ironport-hdrordr: A9a23:h1k0N6lxw7WLt5HcV7c3WFk3LVHpDfIh3DAbv31ZSRFFG/Fw9v re+8jzsCWftN9/YgBCpTntAsm9qBDnlKKdg7NhX4tKNTOO0ACVxepZnO7fKlPbaknDHy1muZ uIsZISNDQ9NzdHZA/BjjWFLw==
- Ironport-phdr: A9a23:VGqgIBBXBN0nOGa0T9jHUyQU+UkY04WdBeb1wqQuh78GSKm/5ZOqZ BWZua88ygGUFtyDtboE07OQ7/qwHzRYoN6oizMrTt9lb1w/tY0uhQsuAcqIWwXQDcXBSGgEJ vlET0Jv5HqhMEJYS47UblzWpWCuv3ZJQk2sfQV6Kf7oFYHMks+5y/69+4HJYwVPmTGxfa5+I A+5oAnPssQam4pvJ6Y+xhfUvndFevldyWd0KV6OhRrx6dm88Z15/yhMp/4t8tNLXLnncag/U bFXAzMqPnwv6sHsqRfNUxaE6GEGUmURnBpIAgzF4w//U5zsrCb0tfdz1TeDM8HuQr86RTqt7 6FwSB/1kygHLCI28HvWisNrkq1Wpg+qqgFlzI7VZIGVM+d+fr/YcNgHS2dNQtpdWipcCY66c oABDfcOPfxAoobyp1UAoxiwCxSyCuzz0TJHnGP60Lcg3ug9DQ3L3gotFM8OvnTOq9X1Mb8fX +evw6nU0TXDb+1Z2Dng44bKaB8hpfWMVq93fMrU00YvCx/FjlWOpo3rJT+VzP4Bs2iB4OpkU eKikHInqwZrojiowMcslo7JhocIylze6Sp22p84KNulQ0F0fdCqCoFftz2GN4RoWMMiRXllt DskxrMJuJO3YTYHxpooyhPCdvCKcZWF7w7nWeuRIzp1hHxodK6wihuu70WtyvDwW8mw3VtKo SdIkdrBu2wQ2hHV98OJSeN981+/1TqT0w3f8OJJLEAumabFN5IswaQ8m5UQvEnFAyT7hkH2j LKNdkU45Oeo8fnpYrTnp5CCL4J4lgfzObk0lMOlG+Q3KA0OUnCb+eui0L3j+lX0QLBQgf03l qnVqY7VKtkGqqKgDQ9Y3YUu5wywDzeh19QYkn0HI0xfdB2biIjpPknCIPH+Dfihn1ShiClny +zCM7H7AZjALmLPnKn9cbt+8UJRxwk+wcha551OC7EBJPzzWlX2tNzdFhI5Nha7w/r7CNV9y IwfV3iDArWDPKPSq1CI4uYvLvKQZI8Sojb9LP4l5+LpjX88hF8RZ7Wm0oEPZHC+BftpO1+Zb mb0gtcdDWcKuRIzQPHyhF2YTTFTf2qyX7475jwjFI2mAp3MRoS0jLOc3Se7BYFZZn1dClCXC nrobIWFW/IUaC2IOMNhkzoEVaKgS4A7zx2uuhX6mPJbKb/f9SQc8J7iz9No/Pb7lBco9DUyA d7O/XuKSjRRl38URzIplIB2pUg1nlKKzbR4juMeD5pT7vdNehs9L5na0+t/Fpb5U1SSLZ+yV F+6T4D+UnkKRdUrzopWC64cM9CrjxSZmjGvH6dQjbuAQpo97qPb2XH1Ycd70XfPkqc73BE9W sUaE2qgi+Zk8hTLQZbTmhCcnrq2dakDmjSL9G6HyUKSu1tfVhJ3VLiDVnlMLlDOo4HB71jZB 6SrFaxhNwJAzcCYLa4fb9T1kVVLW7H5ftTXZ2aZh2CqAhCUwbaRKoHjKC0GxCuILk8CnkgI+ GqecwgzAiD0u2XFEDlnDk7ieWvp+Oh67X63Fwo6k1HMYEpm2L64vBUSgJRwUts12bQJ8Gcko jRwRhOm2s7OTsCHrExndbldZtU05BFG03jYvkpzJM7oKacqnVMYfwlt2iGmnxxqFoVNl9Qrp 3I23UJzL6yfylZIazKf29j5JLTWLmD4+B3nZbTR3xnS19Of+6FH7/pdyR2ruQi1Ckov7DN9l dlc13+0+pLQCwwOVpfsFE0+tlB7q7zcfigh9tbMz3Q/VMv8+jTG2t8vGK4k0kP6J4YZYP7CT leiVZFKVK3MYKQwllOkbwwJJrVX/a8wZYa9cueenbSsN6BmlS6nimJO5MZ81FiN/mxyUL2tv d5NzveG0w+ATzq5gk2mt5W9nIlYeTEfASyljyjtAIp5eqpoeoAXDmKzZca+jIYb5dalSztD+ VivCklTksqgZQaSYkO7x0tQ3EATiWCggyy+0ztxjncip+DMuU6Gi/Snfx0BNGlRQWBkhlq5O om4gecRW02wZhQonh+ojarj75BSv783b2zaQEMSOjPzM3knSKy78LyLf89I7pos9yRRSuW1J 16AGPbxpB4T0iWrGGU7pnhzcji2ppX0gFpgzmKUKHJbsH3DfsdswhLCotfVDfJcxTsJQiBkh CKfXADteYn0u4/Mx9Gf4qi3TAfDHtVLfDPuzJ+cuSfz/mBsDRCl3riyltDhDQkmwHr+3thuW z/PqUW0aY3q2qKmdON/KxMwVRmstowgQtE4zttj4fNYkWIXjZiU43cdxGL6MNEBnLn7cGJIX zkAhdjc/Ani3kRnaHOP3YPwEHuHka4DL5G3ZH0b3iUl4oVEEqCRufZBlDdpolen6xiXYfF5m h8BzuEp7mIdhvxPswNnnUD/SvgCWFJVOyDhjUHC6tmisKVaeyC1N7i50E5Wgde7C7eepQRBH n3wMMRHf2c4/oB0N1TC12f244fvdYzLbN4dgRaTlg/Jk+lfLJ9i3upPnydsPnjx+GE00+Nux wI7xom05cLUTgcltLL8GBNTMSf5It8e6i24x7gLhd6YhsiuBskzQWhNBcqwC6j0T3RK8q67f weWTG9i9jHBQuGZRFHHrh8h9iOqcdjjNmnLdidHi4w6Hl/FYhQY2lhcXS1mzMBnUFr2lYqxK AEhoWpJrl/g9kkTkKQxa1+mAz2Z/EDxOlJWANCeNEYEsV0Evh2Id5TYtqUqQWlZ5sHz9VTdb DXEOEIYSzlOABXMBki/bODxvp+ZorTeXqzmaKKQBNfG4e1GC6XSncPpgtYgpmzccJ3IZyYqD uVniBAaAzYkS4KAym9JE2tOxmrMd5LJ/k7ivHcs/4bkqrKzH1u+gOnHQ61bNdElk/yvqYGEM ePYxCNwKDICk4gJ2WeN0r8UmlgblyBpcTCpV7UGry/ECqzKyOdRCFYAZiV/OdEtjep01xRRO cPdltL+16Jpxv8zBVBfUFX9m8avLcUUKmC5PVnDCQ6FLrODbTHMxsj2Z+u7R9gyxK1MsAasv D+AD0L5FjGKlj2sWhz2dO8Q3GeUOxtRvIz7eRFoSCDiQN/gdhynIYp3gDkxkthWzjvBMW8RN yQ5clsY9OXBq3MFxK8nSyodvikAT6HMgSuS4ujGJ4xDtPJqBn4xjOdG+DEgzLAT6ihYRftzk S+Ur9h0oljgnPPcr1gvGBdItDtPg5qG+Et4PqCMvJxJRWrE8Q1L9yOQAhAOj8diENrpp6dV1 57EneigTVUKu8KR5sYaC8XOfYifN2E9NBPyBDPOJA4MTDruOG2GwkIBwLed8XqaqpV8oZ/p0 slrKPcTRBk+EfUUDV5gFdoJLcJsXz8qprWcidYB+Xu0qBS5rCByopfdUfSOBvDybj2Q3+Esj /ogxLr5KcEeOtS+1RAyLFZ9m4vOFgzbWtUf+kWJgScop19K9mR5S3B10Eu3M2uQ
- Ironport-sdr: 65eb551d_CwjVjBVKq+w6BGdTskI5tGzdjRfQRt+394J26ns2uXIuFc6 EUy8sA4S/ZM0JAdBRrCSpZ6Q7x0Fyhw5a+qZYTA==
Hello,
I'm wondering what the best way is to insert an unbounded line (either unbounded at 1 endpoint or both) into 2d arrangement? I want to be able to insert lines such as (endpoint 1, point at infinity), or (point at infinity, endpoint 2), or both endpoints at infinity. I know of the various "insert_at_" or "insert_on_" methods, but I don't know how to actually create the unbounded curve.
Also, can I perform "decompose" on an arrangement with unbounded segments?
Thank you
- [cgal-discuss] Insert unbounded curves into arrangements, Matthew Hall, 03/08/2024
- Re: [cgal-discuss] Insert unbounded curves into arrangements, Efi Fogel, 03/09/2024
Archive powered by MHonArc 2.6.19+.