Subject: CGAL users discussion list
List archive
- From: Glenn Dittmann <>
- To:
- Subject: [cgal-discuss] Mesh Simplifaction algorithms
- Date: Thu, 17 Oct 2024 15:08:04 +0000
- Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=None
- Ironport-data: A9a23:411+0avjsOA8rMYMx+tBORo/2OfnVGNfMUV32f8akzHdYApBsoF/q tZmKTjXOfzYNDH0f48ja4i/oxtTuMTUn95rSwtt+3swRCIUgMeUXt7xwmXYb3rDdJWbJK5Ex 5xDMYeYdJhcolv0/ErF3m3J9CEkvU2wbuOgTrSCYEidfCc8IA85kxVvhuUltYBhhNm9Emult Mj7yyHlEAbNNwVcbCRNsspvlDs15K6u4WtB4QRiDRx2lAa2e0c9XMp3yZ6ZdCOQrrl8RoaSW +vFxbelyWLVlz9F5gSNz94X2mVTKlLjFVDmZkh+A8BOsTAezsAG6ZvXAdJHAathZ5plqPgqo DlFncTYpQ7EpcQgksxFO/VTO3kW0aGrZNYriJVw2CCe5xSuTpfi/xlhJHsOY4cI0/1wOkFx5 aFIJQ0oRy2BoP3jldpXSsE07igiBMzsIZ9H4zd4yirFAPFgTZ2rr6fivI8FmmlvwJsQW6iDD yYaQWIHgBDobBlCPFFRBJMigOKhgH/XazpDtF+S46Y6i4TW5FUhgeS2boaIJ7RmQ+1/nGCmp nvMol/4CyMEGvm9+Byj00yj07qncSTTHdh6+KeD3vVliVnWym0IAwANTnOgsPyhgwi/XcheI goa4EITQbMa8Uu2UoGkGQW/u2KJuVgQVrK8DtEH1e1E8YKMiy7xO4TOZmcphHEO7afamRRCO p61c9LV6fhHtbqIVSrEsK+Tti+/Pm4ZIAfuoMPCoRQtu7HeTEMb13ojjeqP1IaticbpFDa2z z3iQO0WmeAIlcBSv0mk1Qmvvt9vz6QliiYt4R7LU2Xj4g4RiEtJoWC3wQCz0Mus57p1grVMU LboViReAC0z4UmxqRGw
- Ironport-hdrordr: A9a23:5+dsM6njEnz3FGIdSJSYUDDSfSbpDfIx3DAbv31ZSRFFG/Fw8P re+cjztCWE6gr5PUtLpTnuAsa9qB/nm6KdgrN8AV7BZniEhILAFugLhubfKlbbexEWmNQ96Z td
- Ironport-phdr: A9a23:kBPcfB0D4bEnjCtjsmDOqQ4yDhhOgF0UFjAc5pdvsb9SaKPrp82kY BeHo68w1RSZAc3y0LFttan/i+PaZSQ4+5GPsXQPItRndiQuroEopTEmG9OPEkbhLfTnPGQQF cVGU0J5rTngaRAGUMnxaEfPrXKs8DUcBgvwNRZvJuTyB4Xek9m72/q99pDdfwlEniSxbLNvI Bm5rgjcudQdjJd/JKo21hbGrXxEdvhMy29vOVydgQv36N2q/J5k/SRQuvYh+NBFXK7nYak2T qFWASo/PWwt68LlqRfMTQ2U5nsBSWoWiQZHAxLE7B7hQJj8tDbxu/dn1ymbOc32Sq00WSin4 qx2RhLklDsLOjgk+2zRl8d+jr9UoAi5qhNwzYDaYJ+bOud9cKzBct0XXnZBU8RTVyBdHo+wc 5UDAuwcNuhYtYn9oF4OoAO/CwmoGuzvzDlIjWL40607z+QhDQTG0xYmH9IIrX/Zq9r1NKMMX uCzyqnE1yjMb/JK2Tfh7YjHaBYhofeXULJodsrR0lUvGB3CjlmKtIPqISqY2+IQuGeU8+RuT /igi3I7qw5vuDivwN8hh5TIi44J1F3J+iR0zoYrKdGmS0N2f9GpHZpNuyyaOIV7Q90uTn9qt Ss5xbALupG2cicKxpklxRPRZPyKfYaW7x/lSe2fLzB4hHd/d7K+gRa/6VSvyuLmWcmwylpKq TBFktbKu3sQ1BLT8tCKRuZ+80qhwzqC1gLe5vtKLE01j6bWKp4szqYtmpcQsUnPBC77lUfsg KKYd0go4PWk5uXjb7jgu5SRKYt0ihzlMqQyhMO/G/k2MgkPXmeF4emwyLvu9lDjTrpQlP05i KzZvYjaJcsFoq65BBdY0oMk6xaiEzeqzMkUkWMfLFJCYxKHk5bmO1bULP/lE/izm1WskDF1y PDaJrDtH5bAI3jZnLrgf7tx8UBRxQspwd1e559YErQBL+jyWk/1utzYFBg5MwmszuboDNVyy IUeWWSVDqCEMaPSrUOI5uc1LOmKYo8Yoy79K/8+5/7yk3A5nkURcrS30pcPbnC3BexpI1+Fb nr0ntcBDWAKsxIjQODykl2NTSZTZ2quX6I7/jw0FI2mAp3HRoy0nbOB3Ty7EYFLZmBdEVCBC mzodoWBW/cUci2eOM5hkjoeVbigUYAtzx+utBWpg4Zge+Hb8ylduZP438Vu/MXSkwsz/Hp6F ZezyWaIGk5wk2UODxM3wLx6qEp7ggOM1aV+hbpUFMBP4vpPVC8iMoXAwus8B92kCVGJRcuAV FvzGobuOjo2VN9km7fmAm54EtSm1FXY2jayRqUSnPqNDYA19aTV2z7wIdx8wjDIzvpplEEoF +1IM2Dunatj707LHYecnEGUkaDseaUAwCvE8mGr1W2VoExfFgJ9Au3eRX5KXkLNtpzi41/aC bqnCLApKAxEnMGGJ61MLNHokUlDTfHlEMzZeH68nCG8CEXA3auCOaztfWhVxyDBEA4EngQUq G6BLhQ7Dzy9rnj2CTtzCQq2JVvr6vVzrzW3QyfY1imsaEtsn/qw8x8R37mHTu8Lm6gDs2Eno il1G1C025TXDcCBrkxvZvcUZ9R1+1pB2W/D0m41dpW9M6BvgEIfeAVrrgvv0RtwEIBJjcktq jsj0gNzLauS1F4JeSmf2Nj8PbjeK2+6+x7KCeae1VXT1tDQ9qYT9PExrVPLpAayCkcltXlqk pFU33aa+pTWHV8KS5uiNyR/vxN+przcfmw8/9aNhSAqb/by6WGEhY96YYltggytdNpeLq6eQ Qr7EslAQtOrNPRvgV+iKBQNIOFV8qcwecKgbfqPnqCxb4MC1Hqri3pK5Idl3weC7S15H6TH2 5sDxbeU3xebUj76in+5tdvrlIcCaTxYTQ/dgWD0QZVcYKF/Z9NBBmOjJcvxytRim5vkXXhw7 Fm4G14BnsOkM0n3DRS1zUhb0kIZpmaikC2zwmlvkj0nmaGY2TTH3+XocBdv1ndjfGB5lh+sJ IG1i4pfR020d00zkxDj40/mxq9draA5Lm/JQE4OcTKkZ21lV6KxsPKFbastoNsntShRVqKwY EyGT7f7pTMC1Dj/EmwYyD1zezyxu5r/lgB3kyrEfCs18iWfIp82m0qX7ceUXfNL2zsaWCR07 FufTkOxOdWk55TclpvOtPy/S3P0U5RSdSfxyobT/CC/5GBsHVi+h6XqyoChT1d8inG9iYQ5M EeA5AzxaYTqyamgZOduf00yQUT599I/AIZ11I05mJAX33EewJST53sO12npYrA5kerzamQAQ TkTzpvb+g/gjQdsKn+PwcT1V2mBx8JnYfGiZXgK1yV7480AW8L2pPRU2DB4pFa1t1ebbvxwm DFbxfoy9HsThechoA020iiaRLwfVxo9X2Skh1GD6Nawq79SbWCkfO2r1UZwqtumCamLvgBWX HuqModnByJ76d9zdU7dyHCmoJ+xY8HeNJhA03/c2weFleVeL4g90+YHlTYyc3yopmUrkqY6l UA8hMHn+tbYbT4zuvr+WEU9VHW9ZttPqGG8y/8CwIDMhdjpR88xXW9aFJrwEaD4QXRL6aqhb lfSVmRi8jDBSd+9VUee8Bs0/yOJSsz1cSvMfD9HkZI4GlGcPBAN2VBJGmtl2MVnUFnznYu6K iIbrngQ/gCq8BIUl7BiPEGtCz+H/FX6LWloAI6WKB4chu1bz2HSN8HWrud6HiUCu4aksBTIM GuQIQJBEWAOXEWAQVHlJLino9faoaCeAaKlIv3CbK/ry6QWXuqUxZ+pzopt/iqdfsSJMH54C vQn201FFXlnEsXdkj8LRmQZjSXIJ8KcoR69/GVwoKXduLzzXxnz4IKUF7ZIGdBo5gzu2OGbM PWMiSE/JTsZnpIAyHnUyaQOiV4fjyY9ElvlWb8EtCPLUOfRgvoOX0NdNXw1b5UOsf9vu2sFc dTWgd70yLNi2/s8ClMfEEfkhtnsf8sBZWe0KFLAAk+PcrWAPzzChc/tMsbeAfVdivtZsxqot HOVCUjma36MkzTvUVajMP1QiSidOjRGv5qhfxErBWWpH7eEIlWrdcR6izE72+h+nnTRKWsVK iRxaWtIqaCMtXoemvJkB2FGqHZoZ7rh+W7R/6zTLZAYtuFuCyJ/mrdB4Xg0/LBS6TlNWP1/n Ca6RjtGu1a9juSIjDZqAkImQtljnIWQoUhlf6nUpMAosZfs+RUQ8T3JTQwNvMdoDZvjtvIIo uU=
- Ironport-sdr: 67112860_9NYhtGv5HBvJlM5H0BpwixQxxzvS4Re/PSWgFRO3KvRZKAI tGSktiSLxnvqwncPoyiCL1oW/DZE3hA3uR5rG9A==
Hello,
I am a computer science student from Berlin, currently writing my master thesis in the field of computer graphics.
I have a general question to the Surface Mesh Simplification algorithm (https://doc.cgal.org/latest/Surface_mesh_simplification/index.html).
Problem: Assume I have a 3D (weighted) Delaunay triangulation and I lift it to 4D (as usual with height_v = v_x**2 + v_y**2 + v_z**2 - weight_v), yielding a 4D tetrahedral surface mesh (Similar to lifting a 2D delaunay triangulation to a 3D triangular surface mesh).
My questions is:
Is the simplification algorithm somehow applicable to this scenario (4D tetrahedral surfaces meshes), if I choose the right kernels etc. ?
The documentation says that, "The algorithm implemented here is generic in the sense that it does not require the surface mesh to be of a particular type [...]".
But I guess, I am interpreting a bit much and the sentence is relating to the type of 3D surface meshes only.
Since I also have not seen any publications in that direction and the documentation reads that it is for 3D in general, I assume the simple answer is "No.".
Thanks a lot for your answer in advance!
--
Best regards
Glenn
- [cgal-discuss] Mesh Simplifaction algorithms, Glenn Dittmann, 10/17/2024
Archive powered by MHonArc 2.6.19+.