Skip to Content.
Sympa Menu

cgal-discuss - Re: [cgal-discuss] Mesh Simplifaction algorithms

Subject: CGAL users discussion list

List archive

Re: [cgal-discuss] Mesh Simplifaction algorithms


Chronological Thread 
  • From: Nicklas SB Karlsson <>
  • To:
  • Subject: Re: [cgal-discuss] Mesh Simplifaction algorithms
  • Date: Wed, 06 Nov 2024 11:19:02 +0100
  • Authentication-results: mail2-smtp-roc.national.inria.fr; spf=None ; spf=Pass ; spf=Pass
  • Ironport-data: A9a23:dWJc5K8unYOvzx5sHd9zDrUDvn+TJUtcMsCJ2f8bNWPcYEJGY0x3n 2oWWWjQbq3eYDOkfNogYIrnoE4HsJODx9RnS1ZupChEQiMRo6IpJ/zJdxaqZ3v6wu7rFR88s Z1GMrEsCOhuExcwcz/0auCJQUFUjP3OHPymYAL9EngZbRd+Tys8gg5Ulec8g4p56fC0GArlV ena+qUzA3f7nWctWo4ow/jb8k825ays4GpwUmEWPJingneOzxH5M7pEfcldH1OgKqFIE+izQ fr0zb3R1gs1KD9wYj8Nuu+TnnwiGtY+DyDW4pZlc/TKbix5m8AH+v1T2Mzwxqtgo27hc9hZk L2hvHErIOsjFvWkdO81C3G0H8ziVEHvFXCuzXWX6KSuI0P6n3TExut/CkQxbYYk5t0uEFkN6 L8FJB5KcUXW7w626OrTpuhEnMknJdi3eY9Zv3hhyXfWBPAqQNbFTrmiCd1whm5vwJ8WW6+OP IxAOGQHgBfoO3WjPn8RC7o4n/yiwHTiG9FdgAvE//ZnvjiKnGSd1pCzK4DvceWbbP9ftWCCq kjB+0H0H0EjYYn3JT2ttyjEavX0tSj0UYZXGLyj/eNxm3WI12kLAVsXU0G6qL+3kCaDt8l3M UEQ8zty6KR08UWqSp/yVhu0oTiCswJ0t8dsLtDWITqlksL8izt1zEBaJtLsQIVOWBMeLdDr6 rOIoz8tLSZitLSEFTeRsLKdrDf0NiETIW5EYyIYJefAy8e2u5k913ojUf46eJNZTPWscd0z/ 9xOhC49nL9VgNNjO2CT4wXcmzz1znTWZldd2+gUN15JKit/Z5WvIYG1gbQeATCsM67BJmS8U LM4dwRyIQzA4VxhVMBAfQnVIIyU2g==
  • Ironport-hdrordr: A9a23:OjK7laop+iR3AB3nIx1554oaV5oWeYIsimQD101hICG9Ffbo8P xG/c5rtyMc7Qx6ZJhOo7G90cW7Lk80sKQU3WBzB8bHYOCFggaVxehZhOOI/9SjIVycygc378 tdmsZFZuEYQWIK6PrS0U2XNPtl+tGc9cmT9IHj80s=
  • Ironport-phdr: A9a23:uI7nqxeYlbO71STm2ES+ZOrNlGM+4tTLVj580XLHo4xHfqnrxZn+J kuXvawr0ASQG92BoKscw6qO6ua8AjRGuc7A+Fk5M7VyFDY9yv8q1zQ6B8CEDUCpZNXLVAcdW Pp4aVl+4nugOlJUEsutL3fbo3m18CJAUk6nbVk9Kev6AJPdgNqq3O6u5ZLTfx9IhD2gar9uM Rm6twrcu8cLjYd4Nqo91BTFrmZUd+9LwW9kOU+fkwzz68q+4JJv6Thct+4k+8VdTaj0YqM0Q KBXAzghL207/srnuwXdQwCS/HUcSGIWkhRJAwjB8h73W4r6vzX5uORgxiSUJNX6Qr8oVzus6 adrUwLohzwcNzEl6mHXi9d/g7xdrRm8uhFw2Y/UYIWSNPpjYqPQeM4RSGRdUspNUSFKH4SzY ZURAOsOIeZWto/9p18OrBenHAWhGO3ixz1Gi3PvwaE33PkqHQXG0QA8Gt4DtmnfotfoO6cIS e27z7TGwzXdYf1Y2zj95pTHfR4urv+DRr9wbcjcxFMzGw/ZlFidq4roNC6V2OQXtGib6vJtW /qui2E7qAFxpiKgxtwxgYfUm48e11XK+j9jwIYxPt24U0l7Ydi5G5ZXsSGaNJB7QsUhQ2Fzo yk20KMJuYOicSUM1Z8oyALRZeadfIiU/hLsSvyRITFgiXxrer+zmgu+/Eijx+DhV8S501VHo jZKnNTSuH4BywHe58yaR/Z5+kqs2iiD2gTQ5+1aJU05lqrVJpAvzLMwi5cet1nIECHxmEXzl qCWd0Mk9/C05OToeLrmooWQN4huigHxNKklh8+xAfwgPwQQQmSW+/6w2b//8UHjXblHjfM7n rPEvJ3eJMkWoLOyDhFR0oY+8Ba/Eymp0M4Fk3kGLVNKZgqKg5TvNlrTOv73F+2/jE6pkDpzx /DJILnhApLVI3jZjrjheaxy6k5TxQYq0N9T/ZdUBasAIPL3QEPxu8bXDhkkPAy12ernDsty1 p8GVWKOBK+WLr/SvEeW6u4yIeSAfo0YtCrnJ/Q45PPjg2U1lUIZcKSoxZcXbWq3HvViI0WXe 3rshdIBHH8Mvgo9V+Hqjl6CUSVIaHqoQa08+yk3CIS9AojbXICinKSB3DunHp1Rfm1KF0iAE W30eIWcR/cMdCWSL9d9nTwLT7ehT5Yt2gyvtA/h17VnM/HU+jYDuJL41Nl14vXTmgso+Tx1C cSdyWCNQHtukmMGXT9llJx49Edyw1PG3aljiOFDDvRS4elIW0E0L83y1et/XvbzUQHFd8zBc 3zuYdy8BSoqSdR5l9kNS0B+AN/kgw2VjHniOKMci7HeXM98yanbxXWkep4VIxfu0aAgiwNjW c5TLSi8gaU58QHPBonPmkHflqCwdK1a0jSevHybwz+ou0dVGBV1Tb2DRWoWM03VhdL6/UmEQ qL9Qa8/PF55wNWZYrBPdsWviFxHQPn5P9GLZWGZnWSrD1CF2+DEd5LkLl0Uxz6VE00Yi0YT8 HKBYBA5HTukqnnCASZGD1/ralKwtOU4rXq6Sgk7xgeGbgtn2qbdFgc9o/uaRrtT27sFvH1ks DBoBBOn2NmQDdOcpg1ndaEaYNUn4V4B23iL/wp6doetKaxvnDt8O0x+ol/u2hNrC45Bjdlir XUkyxB3IL6Z11UJfi2R3JT5MLnaYmfo+xXnZ6nT01DYmNGYsqEMwPI7sF+lsRzocyhqu3Rr3 t9J0meNs43QBVlaWpbwX0Arshli8uuDPW9iv8WNhSYqaPjq4Vqgk5ozCeAoywitZYJaOaKAT krpFtECQtKpI6oskkSoaRQNOKZT8rQ1NoWobajjuubjMeB+kTahlWkC7pp61xfG8SlUTO3T1 dAI3rvLlhvCTDr6gFq754rxmqhCZioYWGeig3uBZsYZduh5eoAFDn2rKsu8y4BlhpLjbHVf8 UaqG1IM3MLBlQO6V1XmxkUQ0E0WpSbigi6k13lulDpvqKOD3SvIyuCkdRwdO2cNSnMwxVvrJ IG1iZgdUi3KJ0AvlzOj5l3wgaVG7KhyNGjcR05UcjO+dTg9FPTo8OPSOIgWuc1guD4fSOmmZ FGGVrPx6wAX1S/uBSo7pnhzdj2nvIn4gw0vjWucKHhpq3+KMcp0xBrZ+JndXasLh2VAG3E+0 GmMQAHtYYrMn53cjZrIv+GgWnj0U5RSdXOu1oacrG6h4mYsBxSjnve1k9mhEA4g0Ca92cM5M EeA5Bv6fITv0Ly3dOx9eUw9Tln/w8x5AYs4n5Z619kAnGMXgJmY5y9Nl2TbN9ZA0+TzcTBeI FxDi86Q6w/j1kp5K3uPzI+sTXSRzPxqYNyia38X0CYwvIhaTb2Z57tekW5ps0K1+EjPNONlk G5Xmp5MoDYKxvsEsw03wmCBD6AOSANGaDf0mU3A7sji/v8OOyDwKf7pixo4xIH7S+vcx2MUE HfhJMV4RXcpvJl1YQKe3HavuNG2Kp6OMZoSrkHGyU6fybcNbsthzbxT1HAgYzKY3zVtyvZn3 0Y3gtfl5M7eez8ro/j+WUQQNyWpNZlKpXey1eAHzpzQgNzoRc8pTTwPWNGAoeuAKDsJrrynM g+PFGd5sXKHAf/FGgTZ7k56rnXJGpTtNneNJXBfw88wDBWaIUVehkgTUlBY1tYhERu2wcX6b Epjzioc4lfp9l5AjOdhNh25XW7ZqAbubDooAJSSNxtZ6Ahe6lyda5XBqL0rWXgIpdv4/VLoS CTTbh8AFWwTX02YG13vdqKj49XN6anQB+azKefPfaTbqeFaUKTAzpau3416ujeUY5/WYT89V 7tiihEFBCEnSKG7030VRicaljzAdZuerRa4oGhsq9ynte7sU0Tp7JeODL1bNZNu/Qq3iOGNL b315m4xJDBG25cL3XKNxqIY2QtYjSJGcTq2G/INqGSeKcCY0r8SFBMdZy5pYYFQ6Lkg2wBWJ cPBosn40rdp0rs5TVJMVFinlcivac1MJWyhfgCiZg7DJPGNIjvFxNvyaKW3ROhLjelagBa3v C6SD07pOjnQ3ymsTR2kNvtAyT2KJBEL8p/oaQ5jUCKwKbCuIg3+KtJ8iic6hKE5lm+ff3BJK iByKgtE5viZ6ScS6h2eM3ZM6nN0cayI3SOQ7u2eJZ8QvfotBCloxbsyCJESzbhO5mdJWa4t8 MM9hthtuFvgn/Tdk1Ja
  • Ironport-sdr: 672b42ba_t27hujgvWpBBwX1CDRanpw0I06y9nT6hqT+xlBVYcPelSBM UZ/mL5a1FhNWBUDzGAPab8125dxuKrG2fiG3XWA==

Have you tried what will happen?


For a surface mesh I guess 4D is useful for a 3D model changed over time,
animation.


Nicklas Karlsson


tor 2024-10-17 klockan 15:08 +0000 skrev Glenn Dittmann:
> Hello,
>
> I am a computer science student from Berlin, currently writing my master
> thesis in the field of computer graphics.
>
> I have a general question to the Surface Mesh Simplification algorithm
> (https://doc.cgal.org/latest/Surface_mesh_simplification/index.html).
>
> Problem: Assume I have a 3D (weighted) Delaunay triangulation and I lift
> it to 4D (as usual with height_v = v_x**2 + v_y**2 + v_z**2 - weight_v),
> yielding a 4D tetrahedral surface mesh (Similar to lifting a 2D delaunay
> triangulation to a 3D triangular surface mesh).
>
> My questions is:
> Is the simplification algorithm somehow applicable to this scenario (4D
> tetrahedral surfaces meshes), if I choose the right kernels etc. ?
> The documentation says that, "The algorithm implemented here is generic
> in the sense that it does not require the surface mesh to be of a
> particular type [...]".
>
> But I guess, I am interpreting a bit much and the sentence is relating
> to the type of 3D surface meshes only.
> Since I also have not seen any publications in that direction and the
> documentation reads that it is for 3D in general, I assume the simple
> answer is "No.".
>
> Thanks a lot for your answer in advance!
>
> --
> Best regards
> Glenn
>
>




  • Re: [cgal-discuss] Mesh Simplifaction algorithms, Nicklas SB Karlsson, 11/06/2024

Archive powered by MHonArc 2.6.19+.

Top of Page