coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: David Nowak <David.Nowak AT irisa.fr>
- To: Club Coq <coq-club AT pauillac.inria.fr>
- Subject: A question about Exists in LISTS/Streams.v
- Date: Thu, 28 Jan 1999 15:06:53 +0100
- Organization: IRISA
Hello,
I do not understand why, in the standard library, the predicate Exists
is defined by :
Inductive Exists : Stream -> Prop :=
Here : (x:Stream)(P x) ->(Exists x) |
Further : (x:Stream)~(P x)->(Exists (tl x))->(Exists x).
More precisely my question is why do we need to prove ~(P x) in the
second case ? It may be that (P x) and ~(P x) are not provable, and then
(Exists x) will not be provable whenever (Exists (tl x)) is provable ;
which is again my again my intuition of the predicate Exists (Maybe it
is not the good intuition).
--
David Nowak
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
David Nowak | phone: +33 2 99 84 25 03
IRISA / INRIA, EP-ATR project | fax: +33 2 99 84 25 28
Campus de Beaulieu | e-mail:
David.Nowak AT irisa.fr
F-35042 RENNES CEDEX - FRANCE | http://www.irisa.fr/prive/nowak/
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- A question about Exists in LISTS/Streams.v, David Nowak
Archive powered by MhonArc 2.6.16.