coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Christine Paulin <Christine.Paulin AT lri.fr>
- To: Nadeem Abdul Hamid <nadeem AT acm.org>
- Cc: "coq-club AT pauillac.inria.fr" <coq-club AT pauillac.inria.fr>
- Subject: Re: [Coq-Club] equality/injection
- Date: Mon, 4 Feb 2002 18:05:22 +0100
Yes, the only trick is to use a dependent elimination for type
DefProp which is not define automatically but can be
introduced using the Scheme macro :
Scheme DefProp_elim := Induction for DefProp Sort Prop.
Lemma eq_comb
: (d1,d1':Def1)d1=d1'->(d2:(DefProp d1); d2':(DefProp d1'))
(c3 d1 d2)=(c3 d1' d2').
Destruct 1.
Intro d2.
Elim d2 using DefProp_elim.
Intros d d2'.
Elim d2' using DefProp_elim; Trivial.
Save.
Nadeem Abdul Hamid writes:
> Can the following lemma be proven in Coq?:
>
> Inductive Def1 : Set
> := c1 : Def1.
>
> Inductive DefProp : Def1 -> Prop
> := c2 : (d:Def1)(DefProp d).
>
> Inductive Comb : Set
> := c3 : (d:Def1)(DefProp d) -> Comb.
>
> Lemma eq_comb
> : (d1,d1':Def1; d2:(DefProp d1); d2':(DefProp d1'))
> d1=d1' ->
> (c3 d1 d2)=(c3 d1' d2').
>
> Thanks in advance,
> --- nadeem
--
Christine Paulin-Mohring mailto :
Christine.Paulin AT lri.fr
LRI, UMR 8623 CNRS, Bat 490, Université Paris Sud, 91405 ORSAY Cedex
LRI tel : (+33) (0)1 69 15 66 35 fax : (+33) (0)1 69 15 65 86
INRIA tel : (+33) (0)1 39 63 54 60 fax : (+33) (0)1 39 63 56 84
- [Coq-Club] equality/injection, Nadeem Abdul Hamid
- Re: [Coq-Club] equality/injection, Christine Paulin
- [Coq-Club] Re: equality/injection,
Nadeem Abdul Hamid
- Re: [Coq-Club] Re: equality/injection, Christine Paulin
- [Coq-Club] Re: equality/injection,
Nadeem Abdul Hamid
- Re: [Coq-Club] equality/injection, Christine Paulin
Archive powered by MhonArc 2.6.16.