coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: David Pichardie <david.pichardie AT irisa.fr>
- To: David.pichardie AT irisa.fr
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] Well_founded Recursion and proofs
- Date: Tue, 12 Mar 2002 16:16:47 +0100
- Organization: IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE
J'ai trouvé un début de solution dans le module Coq.Init.Wf.
Désolé pour le dérangement.
Pour information :
Require Peano_dec.
Require Arith.
Axiom lemme_dec : (n:nat) ~n=(0) -> (lt (minus n (1)) n).
Fixpoint F [n:nat; H:(Acc nat lt n)] :nat :=
if (eq_nat_dec n (0)) then [p](0)
else [p](F (minus n (1)) (Acc_inv nat lt n H (minus
n (1)) (lemme_dec n p))).
Axiom wf_nat : (well_founded nat lt).
Scheme Acc_inv_dep := Induction for Acc Sort Prop.
Lemma F_eq : (n:nat)(H:(Acc nat lt n))
(if (eq_nat_dec n (0)) then [p](0)
else [p](F (minus n (1)) (Acc_inv nat lt n H (minus
n (1)) (lemme_dec n p))))
= (F n H).
Intros n H.
Elim H using Acc_inv_dep.
Intros.
Simpl.
Auto.
Qed.
Theorem F0_is_0 : (F (0) (wf_nat (0)))=(0).
Case (F_eq (0) (wf_nat (0))).
Simpl.
Reflexivity.
Qed.
-------------------
To unsubscribe, mail
coq-club-request AT pauillac.inria.fr
Bug reports: http://coq.inria.fr/bin/coq-bugs
Coq-Club Archives: http://coq.inria.fr/mailing-lists/coqclub/
- [Coq-Club] beginner, Amelia Viorela Rastei
- Re: [Coq-Club] beginner, Bruno Barras
- Re: [Coq-Club] Well_founded Recursion and proofs, David Pichardie
Archive powered by MhonArc 2.6.16.