Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Reducing memory usage

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Reducing memory usage


chronological Thread 
  • From: Judicael Courant <Judicael.Courant AT lri.fr>
  • To: "Russell O'Connor" <roconnor AT math.berkeley.edu>
  • Cc: "coq-club AT pauillac.inria.fr" <coq-club AT pauillac.inria.fr>
  • Subject: Re: [Coq-Club] Reducing memory usage
  • Date: Wed, 8 Jan 2003 10:04:25 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi,


Exactly what kind of paradox are we talking about that would require
this
global check, and for which using axioms instead of theorems would be
inadequate?


I guess the problem Pierre mentions is about implicit universes. I am no specialist of paradoxes, but at least I can show you an example where "Axiom X : t1. Definition d := t2." and "Definition X : t1 := t3." are both valid and "Definition d : t1 := t3. Definition d := t2." is invalid in Coq because of universe constraints:


Axiom Y : (U:Type)U->U.

Axiom X : (U:Type)U->U.

Definition d := (Y ((U:Type)U->U) X).

is valid and so is

Axiom Y : (U:Type)U->U.
Definition X : (U:Type)U->U := Y.

But

Axiom Y : (U:Type)U->U.

Definition X : (U:Type)U->U := Y.

Definition d := (Y ((U:Type)U->U) X).

is rejected (universe inconsistency).


This means implicit universes and separate checking of theories are mutually incompatible (see my TPHOLs 02 paper about this if you are interested, it is available from http://www.lri.fr/~jcourant/publis/liste_publis.en.html)

Judicaël.

PS (for specialist of universes): this example has nothing to do with the fact Coq does not implement typical ambiguity for definitions.
--
Judicael.Courant AT lri.fr,
 http://www.lri.fr/~jcourant/
Tel (+33) (0)1 69 15 64 85
GPG public key: 7C25 D439 9F60 BC68 A131  6267 98B9 98F6 7107 2457




Archive powered by MhonArc 2.6.16.

Top of Page