coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "J. Zhang" <j.l.zhang AT durham.ac.uk>
- To: "coq" <coq-club AT pauillac.inria.fr>
- Subject: [Coq-Club] understanding of invension tactic in Coq
- Date: Wed, 5 Mar 2003 23:22:23 -0000
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Dear Coq people,
Can I get the more detailed explaination of
inversion tactic in Coq. For example, from the this below definition on Vector,
when we define Vbinary function, why do we need to do inversion twice. And for
each inversion operation, what is consequence of it. I feel confused to
understand.
Hope to get advice.
Inductive vector: nat -> Set
:=
| Vnil : (vector O)
| Vcons : (a:A) (n:nat) (vector n) -> (vector (S n)).
| Vnil : (vector O)
| Vcons : (a:A) (n:nat) (vector n) -> (vector (S n)).
Lemma Vbinary : (n:nat)(vector
n)->(vector n)->(vector
n).
Proof.
Induction n; Intros.
Exact Vnil.
Inversion H0; Inversion H1.
Exact (Vcons (g a a0) n0 (H H3 H5)).
Defined.
Proof.
Induction n; Intros.
Exact Vnil.
Inversion H0; Inversion H1.
Exact (Vcons (g a a0) n0 (H H3 H5)).
Defined.
Regards
Jack
- [Coq-Club] understanding of invension tactic in Coq, J. Zhang
- Re: [Coq-Club] understanding of invension tactic in Coq, Hugo Herbelin
Archive powered by MhonArc 2.6.16.