coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Patricia Peratto" <pperatto AT hotmail.com>
- To: "Christine Paulin" <Christine.Paulin AT lri.fr>
- Cc: <coq-club AT pauillac.inria.fr>
- Subject: Re: [Coq-Club] dependent types
- Date: Tue, 2 Jan 1996 00:24:41 -0300
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Than you very much.
But I want to define dependent elimination over Sort
Set. I couldn't. Is not allowed?
Patricia Peratto
----- Original Message -----
From: "Christine Paulin"
<Christine.Paulin AT lri.fr>
To: "Patricia Peratto"
<pperatto AT hotmail.com>
Cc:
<coq-club AT pauillac.inria.fr>
Sent: Sunday, March 23, 2003 1:48 PM
Subject: Re: [Coq-Club] dependent types
>
> You may use the following declaration
> Coq < Scheme or_elim := Induction for or Sort Prop.
> or_elim is recursively defined
>
> Coq < Check or_elim.
> or_elim
> : (A,B:Prop; P:(A\/B ->Prop))
> ((a:A)(P (or_introl A B a))) ->
> ((b:B)(P (or_intror A B b))) ->(o:(A\/B))(P o)
>
> In order to use it, when p has type (A\/B)
> there is the tactic
> Elim p using or_elim.
>
> C. Paulin
>
> Patricia Peratto writes:
> > I'm trying to define a rule for or_elim with dependent types
> > as follows:
> >
> > (A,B:Prop; P:(A\/B->Set))
> > ((a:A)(P (or_introl A B a)))
> > ->((b:B)(P (or_intror A B b)))->(p:(A\/B))(P p)
> >
> > with cases, but does not recognize p as formed
> > by constructors and asks type (P p) for the conclusion.
> >
> > Is it not possible to define this rule in Coq?
> >
> > Regards
> >
> > Patricia Peratto
>
> --
> Christine Paulin-Mohring mailto :
>Â Christine.Paulin AT lri.fr
> LRI, UMR 8623 CNRS, Bat 490, Université Paris Sud, 91405 ORSAY Cedex
> LRI tel : (+33) (0)1 69 15 66 35 fax : (+33) (0)1 69 15 65 86
>
>
>
>
>
>
>
>
- [Coq-Club] dependent types, Patricia Peratto
- Re: [Coq-Club] dependent types,
Christine Paulin
- Re: [Coq-Club] dependent types, Patricia Peratto
- Re: [Coq-Club] dependent types,
Christine Paulin
- Re: [Coq-Club] dependent types, Benjamin Werner
- Re: [Coq-Club] dependent types,
Christine Paulin
- Re: [Coq-Club] dependent types, Patricia Peratto
- Re: [Coq-Club] dependent types,
Christine Paulin
Archive powered by MhonArc 2.6.16.