Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Type equality

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Type equality


chronological Thread 
  • From: "Lukasz Stafiniak" <l_stafiniak AT hoga.pl>
  • To: <coq-club AT pauillac.inria.fr>
  • Subject: [Coq-Club] Type equality
  • Date: Wed, 30 Jul 2003 09:23:48 +0200
  • Importance: normal
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
  • Priority: normal

Hi List,

Can the following equality be decided?

Inductive typterm : Set->Set :=
   tybool : (typterm bool)
 | tynat : (typterm nat)
 | tyfun : (a, b : Set)(typterm a)->(typterm b)->(typterm (a->b)).

Definition deceq : (a,b:Set)(typterm a)->(typterm b)->
{a==b}+{~a==b}.

Is it anyway true, that ~nat==bool? Do you know any other means to decide
type equality (computationally)?

Thank You, Best Regards,
Lukasz





Uwaga! Do koñca sierpnia przed³u¿yli¶my promocje, do pakietów
wielostanowiskowych dok³adamy PenDrive  Sprawd¼:
http://www.mks.com.pl/promocja-mobile.html




Archive powered by MhonArc 2.6.16.

Top of Page