coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Lukasz Stafiniak" <l_stafiniak AT hoga.pl>
- To: <coq-club AT pauillac.inria.fr>
- Subject: [Coq-Club] Type equality
- Date: Wed, 30 Jul 2003 09:23:48 +0200
- Importance: normal
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
- Priority: normal
Hi List,
Can the following equality be decided?
Inductive typterm : Set->Set :=
tybool : (typterm bool)
| tynat : (typterm nat)
| tyfun : (a, b : Set)(typterm a)->(typterm b)->(typterm (a->b)).
Definition deceq : (a,b:Set)(typterm a)->(typterm b)->
{a==b}+{~a==b}.
Is it anyway true, that ~nat==bool? Do you know any other means to decide
type equality (computationally)?
Thank You, Best Regards,
Lukasz
Uwaga! Do koñca sierpnia przed³u¿yli¶my promocje, do pakietów
wielostanowiskowych dok³adamy PenDrive Sprawd¼:
http://www.mks.com.pl/promocja-mobile.html
- [Coq-Club] Type equality, Lukasz Stafiniak
- Re: [Coq-Club] Type equality, Eduardo Gimenez
- Re: [Coq-Club] Type equality,
Pierre Letouzey
- Re: [Coq-Club] Type equality,
jeanfrancois . monin
- Re: [Coq-Club] Type equality, Pierre Courtieu
- Re: [Coq-Club] Type equality,
jeanfrancois . monin
- Re: [Coq-Club] Type equality, jeanfrancois . monin
- Re: [Coq-Club] Type equality,
Pierre Letouzey
- Re: [Coq-Club] Type equality, Hugo Herbelin
Archive powered by MhonArc 2.6.16.