Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Re: Equality proofs

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Re: Equality proofs


chronological Thread 
  • From: Nadeem Abdul Hamid <nadeem AT acm.org>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] Re: Equality proofs
  • Date: Mon, 08 Mar 2004 14:01:27 -0500
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
  • Organization: Yale University

OK, I see now how to do this: you have to generalize over the dependent terms and then rewrite and then use the "eq_rec_eq" axiom.

Now, another question: Is it possible to prove that
  (x:A)(D:x=x) D==(refl_equal A x)
from the Eqdep library as it is? If not, has it been shown that adding this as an axiom is safe? Can this replace the eq_rec_eq axiom in Eqdep?

Thanks for any help on these issues,
--- nadeem

Require Eqdep.

Variable i:nat.
Variable Fty:nat->Set.
Variable F:(Fty i).
Variable R:(i:?)(Fty i) -> bool.
Variable D:i=O.

Lemma eqR_F : (R i F)=(R O (eq_rec ? i ? F ? D)).
Generalize F.
Generalize D.
Rewrite D.
Intros.
Replace (eq_rec nat O Fty f O e) with f; Auto.
Apply eq_rec_eq.
Save.






Nadeem Abdul Hamid wrote:

Hello all,
Is it possible to prove the following at all (i.e. using the Eqdep library):


Variable i:nat.
Variable Fty:nat->Set.
Variable F:(Fty i).
Variable R:(i:?)(Fty i) -> bool.
Variable D:i=O.

Lemma eqR_F : (R i F)=(R O (eq_rec ? i ? F ? D)).


Thanks,
--- nadeem

--------------------------------------------------------
Bug reports: http://coq.inria.fr/bin/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
         http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club






Archive powered by MhonArc 2.6.16.

Top of Page