coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Casteran <casteran AT labri.fr>
- To: Yong Luo <yong.luo AT durham.ac.uk>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] 1 /= 0 ?
- Date: Tue, 08 Jun 2004 16:18:38 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
- Organization: LaBRI
Yong Luo wrote:
Dear all,
I am stuck in proving 1 /= 0, ie. one is not equal to zero, ~ (S O) =
O, where 1 and 0 are Natural Numbers, nat.
I can find any similar proposition in Coq's library of classical logic.
Can anyone give me a hand and tell me how to prove it in Coq?
Thank you.
Yong
--------------------------------------------------------
Bug reports: http://coq.inria.fr/bin/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
Hello,
It's automatic, with the tactic discriminate:
Coq < Theorem zero_one : 1<>0.
1 subgoal
============================
1 <> 0
zero_one < discriminate.
Proof completed.
zero_one < Qed.
If you want to see the proof term Coq build for you, you can print it:
Coq < Print zero_one.
zero_one =
fun H : 1 = 0 =>
let H0 :=
eq_ind 1
(fun ee : nat => match ee return Prop with
| O => False
| S _ => True
end) I 0 H in
False_ind False H0
: 1 <> 0
Pierre
--
Pierre Casteran,
LaBRI, Universite Bordeaux-I |
351 Cours de la Liberation |
F-33405 TALENCE Cedex |
France |
tel : (+ 33) 5 40 00 69 31
fax : (+ 33) 5 40 00 66 69
email: Pierre . Casteran @ labri . fr (but whithout white space)
www: http://www.labri.fr/Perso/~casteran
- [Coq-Club] 1 /= 0 ?, Yong Luo
- Re: [Coq-Club] 1 /= 0 ?, Yong Luo
- Re: [Coq-Club] 1 /= 0 ?, Pierre Casteran
Archive powered by MhonArc 2.6.16.