Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Proofs with Let constructs

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Proofs with Let constructs


chronological Thread 
  • From: Jean-Christophe Filliatre <Jean-Christophe.Filliatre AT lri.fr>
  • To: Nicolas Magaud <nmagaud AT cse.unsw.edu.au>
  • Cc: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] Proofs with Let constructs
  • Date: Mon, 8 Nov 2004 12:47:30 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Nicolas Magaud writes:
 > -----------------------------------------------------------------
 > Require Export Omega.
 > 
 > Parameter mk_pair : Z -> prod Z Z.
 > Parameter P:Z->Prop.
 > Parameter Q:Z->Prop.
 > Axiom fst_pair : forall v:Z,(P (fst (mk_pair v))).
 > Axiom snd_pair : forall v:Z,(Q (snd (mk_pair v))).
 > 
 > Lemma bidon : forall v:Z, let (n1,n2):= mk_pair v in ((P n1)/\(Q n2)).
 > intros v.

this works:

  generalize (fst_pair v) (snd_pair v); destruct (mk_pair v).

-- 
Jean-Christophe






Archive powered by MhonArc 2.6.16.

Top of Page