Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Re: Wellordering types

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Re: Wellordering types


chronological Thread 
  • From: Larry Paulson <Larry.Paulson AT cl.cam.ac.uk>
  • To: casteran AT labri.fr
  • Cc: coq-club AT pauillac.inria.fr, isabelle-users AT cl.cam.ac.uk, Larry.Paulson AT cl.cam.ac.uk
  • Subject: [Coq-Club] Re: Wellordering types
  • Date: Thu, 25 Nov 2004 11:31:47 +0000
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
  • Organization: Computer Laboratory, University of Cambridge, England

> I am looking for proofs that some (D,<) is well founded by
> using some mapping from D into some wellordering type W(A,B)
> ( (WO A B) in Coq Standard Library.)
> 
> Is there some methodology for working on these types (i.e.
> building A and B from D and <)?

For Isabelle/HOL, look in the file Wellfounded_Relations.ML for the inverse 
image construction. There are theorems for composing well-foundedness 
properties.

There is a simmilar development for Isabelle/ZF.
-- 
Larry Paulson






Archive powered by MhonArc 2.6.16.

Top of Page