Skip to Content.
Sympa Menu

coq-club - [Coq-Club] beginners problem with well_foundness

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] beginners problem with well_foundness


chronological Thread 
  • From: Karol Oslowski <ko181282 AT zodiac.mimuw.edu.pl>
  • To: Coq Club <coq-club AT pauillac.inria.fr>
  • Subject: [Coq-Club] beginners problem with well_foundness
  • Date: Fri, 22 Apr 2005 14:56:19 +0200
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hi,
since about two weeks I'm completely stuck with prooving well foundness'ness of a relation R. I have the following definitions :
"
   Inductive seqFin : A -> Type :=
     | single: forall ( a : A ), seqFin a
     | cons: forall ( a b : A ) ( s : seqFin b ), R a b -> seqFin a.

   Definition seqInfAny := nat -> A.

Definition seqInfOk2( seq : seqInfAny ) := forall n : nat, R ( seq n ) ( seq ( S n ) ).

   Record seqInf : Type := make_seqInf{
     seqi : seqInfAny;
     seqOk : seqInfOk2 seqi
   }.

   Inductive seq : Type :=
     | finite : forall ( a : A ) ( s : seqFin a ), seq
     | infinite : forall ( s : seqInf ), seq.
"
I've prooven that :
"
  inductive A R /\ increasing A R -> (forall s : seq A R , isFinite s ).
"

And I want to proove the theorem:
"
inductive A R /\ increasing A R -> well_founded ( RInv R ).
"
I guess it should be very easy. I'm not giving the definitions of inductive and increasing because I guess they are not important.

I would be grateful for any sugestions.

kind regards

Karol Oslowski





Archive powered by MhonArc 2.6.16.

Top of Page