Skip to Content.
Sympa Menu

coq-club - [Coq-Club] well ordered sets and least elements

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] well ordered sets and least elements


chronological Thread 
  • From: Pierre Casteran <pierre.casteran AT labri.fr>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] well ordered sets and least elements
  • Date: Sun, 1 May 2005 15:34:50 +0200
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Hello,

 I suspect thet the statement "Every (recursive, non empty) subset
of a well ordered set has a least element" cannot be intuitionnistically
proven. All the proofs I know use classically the impossibility of
building an infinite decreasing sequence. On the other side, I couldn't
find any algorithm for finding such an element, starting from the
non-emptyness witness.

 Is that true?
 It is is, where can I find a formal argument (e.g. reduction to a
 known problem) ?

Thenks in advance,

Pierre


-- 
Pierre Casteran

http://www.labri.fr/Perso/~casteran/

(+33) 540006931

----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.




Archive powered by MhonArc 2.6.16.

Top of Page