coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Haixing Hu <Haixing.Hu AT imag.fr>
- To: Benjamin Werner <benjamin.werner AT polytechnique.fr>
- Cc: robert dockins <robdockins AT fastmail.fm>, Coq Club <coq-club AT pauillac.inria.fr>
- Subject: Re: [Coq-Club] decidable eq on a well-specified type
- Date: Mon, 2 May 2005 13:38:06 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Yes, you are right. I also found that this lemma was independed in the CIC,
unless the equality was decidable. Thank you very much for help.
Quoting Benjamin Werner
<benjamin.werner AT polytechnique.fr>:
> Hi,
>
> This is not exactly a simplification. Indeed your lemma cannot be
> proved without axiom in the current version of Coq's type theory. On
> the other hand, the corresponding propositions over natural numbers (or
> any type upon which equality is decidable) are provable without further
> assumptions.
>
> There was a discussion of the case of the predicate < (or <= ) not long
> ago.
>
>
> Cheers,
>
>
> Benjamin
>
>
>
> Le 27 avr. 05, à 16:07, Haixing Hu a écrit :
>
> > This is an interesting problem. There is another simplified version:
> > how to
> > prove the floowing lemma?
> >
> > Lemma single_eq_proof : forall (A : Type) (x : A) (p1 p2 : x = x), p1
> > = p2.
> >
> >
> >
> > Quoting robert dockins
>Â >Â <robdockins AT fastmail.fm>:
> >
> >> I'm playing around with well-specified types and tried to prove
> >> something like the following :
> >>
> >> Parameter limit:nat.
> >> Definition nat_subset := { n:nat | n < limit }.
> >> Lemma eq_nat_subset_dec : forall x y:nat_subset, {x=y}+{x<>y}.
> >>
> >>
> >> I've had great difficulties, however. The problem comes down to
> >> showing
> >> that two proofs of (x<limit) are equivalent. From the definition of
> >> 'le' it seems pretty clear that this is the case. However I run into
> >> problems with second-order unification and the restrictions between
> >> the
> >> Prop and Set universes with all the techniques I have tried. Is it
> >> possible to prove a goal like this one without resorting to classic
> >> (and
> >> hence proof irrelevance)?
> >>
> >> --------------------------------------------------------
> >> Bug reports: http://coq.inria.fr/bin/coq-bugs
> >> Archives: http://pauillac.inria.fr/pipermail/coq-club
> >> http://pauillac.inria.fr/bin/wilma/coq-club
> >> Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
> >>
> >>
> >>
> >
> >
> >
> >
> > -------------------------------------------------
> > envoyé via Webmail/IMAG !
> >
> > --------------------------------------------------------
> > Bug reports: http://coq.inria.fr/bin/coq-bugs
> > Archives: http://pauillac.inria.fr/pipermail/coq-club
> > http://pauillac.inria.fr/bin/wilma/coq-club
> > Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
> >
>
> --------------------------------------------------------
> Bug reports: http://coq.inria.fr/bin/coq-bugs
> Archives: http://pauillac.inria.fr/pipermail/coq-club
> http://pauillac.inria.fr/bin/wilma/coq-club
> Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
>
>
>
-------------------------------------------------
envoyé via Webmail/IMAG !
- Re: [Coq-Club] decidable eq on a well-specified type, Roland Zumkeller
- Re: [Coq-Club] decidable eq on a well-specified type, Pierre Courtieu
- Re: [Coq-Club] decidable eq on a well-specified type, roconnor
- <Possible follow-ups>
- Re: [Coq-Club] decidable eq on a well-specified type, Haixing Hu
Archive powered by MhonArc 2.6.16.