coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Casteran <pierre.casteran AT labri.fr>
- To: Pierre Casteran <pierre.casteran AT labri.fr>
- Cc: topwl AT free.fr, coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club]induction proof
- Date: Thu, 11 May 2006 17:43:09 +0200
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Pierre Casteran wrote:
Require Import Peano_dec.
Your proof of transitivity can be done if you first prove (or admit) a little lemma
(I hope it's true).
Lemma lt_plus_ab : forall n a b : nat, n < a + b ->
n < a \/ exists y, n=a+y /\ y < b.
Admitted.
Require Import Omega.
Lemma lt_plus_ab : forall n a b : nat, n < a + b ->
n < a \/ exists y, n=a+y /\ y < b.
intros n a b; case (le_lt_dec a n).
intros.
right;exists (n-a).
omega.
auto.
Qed.
- [Coq-Club]induction proof, topwl
- Re: [Coq-Club]induction proof,
Pierre Casteran
- Re: [Coq-Club]induction proof, Pierre Casteran
- Re: [Coq-Club]induction proof, Carlos.SIMPSON
- Re: [Coq-Club]induction proof, Pierre Casteran
- Re: [Coq-Club]induction proof, Jean.Duprat
- Re: [Coq-Club]induction proof,
Pierre Casteran
Archive powered by MhonArc 2.6.16.