Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club]induction proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club]induction proof


chronological Thread 
  • From: Pierre Casteran <pierre.casteran AT labri.fr>
  • To: Pierre Casteran <pierre.casteran AT labri.fr>
  • Cc: topwl AT free.fr, coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club]induction proof
  • Date: Thu, 11 May 2006 17:43:09 +0200
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Pierre Casteran wrote:


Your proof of transitivity can be done if you first prove (or admit) a little lemma

(I hope it's true).
Lemma lt_plus_ab : forall n a b : nat, n < a + b ->
                             n < a \/ exists y, n=a+y /\ y < b.
Admitted.

Require Import Peano_dec.
Require Import Omega.
Lemma lt_plus_ab : forall n a b : nat, n < a + b ->
                             n < a \/ exists y, n=a+y /\ y < b.
intros n a b; case (le_lt_dec a n).
intros.
right;exists (n-a).
 omega.
auto.
Qed.





Archive powered by MhonArc 2.6.16.

Top of Page