coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Jean-Marc Notin <notin AT lix.polytechnique.fr>
- To: Carter Tazio Schonwald <carter.schonwald AT yale.edu>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club]how to prove basic arithmatic properties?
- Date: Wed, 21 Mar 2007 17:08:56 +0100
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
- Organization: CNRS - LIX
Here is the proof for distrib_mult_sum:
Theorem distrib_mult_sum : forall a b c : nat ,
mult a (sum b c) = sum (mult a b) (mult a c).
Proof.
induction a; simpl.
trivial.
intros b c.
rewrite IHa.
replace (sum (sum b c) (sum (mult a b) (mult a c))) with (sum b (sum
(sum c (mult a b)) (mult a c))).
rewrite (commute_sum c); repeat rewrite assoc_sum; trivial.
repeat rewrite assoc_sum; trivial.
Qed.
The proofs of assoc_mult and comm_mult can be made using
distrib_mult_sum, i guess...
--
Jean-Marc Notin
LIX - Équipe LogiCal
Attachment:
signature.asc
Description: Ceci est une partie de message numériquement signée
- [Coq-Club]how to prove basic arithmatic properties?, Carter Tazio Schonwald
- Re: [Coq-Club]how to prove basic arithmatic properties?, Benjamin Gregoire
- Re: [Coq-Club]how to prove basic arithmatic properties?, Jean-Marc Notin
- Re: [Coq-Club]how to prove basic arithmatic properties?, Jean-Marc Notin
Archive powered by MhonArc 2.6.16.