Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Equality in the presence of impredicativity

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Equality in the presence of impredicativity


chronological Thread 
  • From: Stefan Monnier <monnier AT iro.umontreal.ca>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] Equality in the presence of impredicativity
  • Date: Sat, 01 Sep 2007 00:05:22 -0400
  • Cancel-lock: sha1:VdIcmlETiecC8Tm17wh89wZX790=
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Let's say we have a definition such as the following (which require
the --impredicative-set argument):

   Inductive Foo : Set :=
      | toto : forall k:Set, (k -> nat) -> Foo
      | ...

Given a proof that "toto K1 F1 = toto K2 F2", we cannot prove that "K1 =
K2" because that would require a strong elimination on a large
inductive type.

Has there been any work that would (tend to) show under which circumstances
adding an axiom as below preserves or breaks soundness?

  Axiom Eq_toto : forall (K1 K2:Set) F1 F2 P,
                  toto K1 F1 = toto K2 F2 -> P K1 F1 -> P K2 F2.


-- Stefan





Archive powered by MhonArc 2.6.16.

Top of Page