coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Andrew McCreight" <continuation AT gmail.com>
- Cc: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] Induction step in Coq
- Date: Fri, 24 Oct 2008 09:26:15 -0700
- Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=message-id:date:from:subject:cc:in-reply-to:mime-version :content-type:references; b=G6oSrfMHsBE65OpV4IZnJvBrR0If77gZ0UMpYRx02rcYXphgn2IanXjMbblPpe9R2F ilmMV547PWv9ffvKwejRkWBp2n0J0mzixuYf4fLP0ut8krcvpbreZoWBSPBfWGRhZrMF 5yJdQq5oGuEPXBVYyur3QOMj8eSdjwQRnWrZM=
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Make sure that the goal (and not the hypotheses) has n. When you apply induction, you want it to look something like this:
t : A
----------------------
forall n, B n -> my_pred n t
If you do "induction t" when n is a hypotheses, then n is fixed for all instances of the induction.
Andrew
On Fri, Oct 24, 2008 at 9:04 AM, Flavio L. C. de Moura <flaviomoura AT unb.br> wrote:
Hello,
This is probably a simple question, but I didn't manage to solve it...
I have a binary predicate, say my_pred n t. The first argument is a natural and the second is an term of inductive type. In the induction step I get an _expression_ of the form my_pred (n+1) t' where t' is simpler than t, and hence I can apply the induction hypothesis, but the induction hypothesis refers to the _expression_ my_pred n t'. In a paper and pencil proof this step is trivial, but how can I instruct Coq to apply the induction hypothesis correctly?
Thank you in advance!
Best regards,
Flávio.
--------------------------------------------------------
Bug reports: http://logical.futurs.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
- [Coq-Club] Induction step in Coq, Flavio L. C. de Moura
- Re: [Coq-Club] Induction step in Coq, Andrew McCreight
- Re: [Coq-Club] Induction step in Coq,
Ezra Cooper
- Re: [Coq-Club] Induction step in Coq, Flavio L. C. de Moura
Archive powered by MhonArc 2.6.16.