Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Proof problem

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Proof problem


chronological Thread 
  • From: Ashish Darbari <ashish_darbariuk AT yahoo.co.uk>
  • To: coq-club AT pauillac.inria.fr
  • Subject: [Coq-Club] Proof problem
  • Date: Sun, 8 Feb 2009 12:36:59 +0000 (GMT)
  • Domainkey-signature: a=rsa-sha1; q=dns; c=nofws; s=s1024; d=yahoo.co.uk; h=Message-ID:Received:X-Mailer:Date:From:Reply-To:Subject:To:MIME-Version:Content-Type; b=NJFFHOdomH5PSXRSSi4w33Gwgd0C2ZR8BWdlKR9DyhtkxhapKMer79N324MphupHqZoh/sH+2YY6qvRoqEk3f0sL2rr94HxBw5wRVh0vJNnb2t6DYKvAv0EtroF4MkinKkYehhG2f6SdGYZvdYaxX8UaosuvcvX/67YfqkO/C88=;
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

I'm trying to prove the following:

Goal forall x y:Z, (x <> 0) -> (y <> 0) -> (x+y = 0) -> 
   (~(Zabs x < Zabs y)) /\  (~(Zabs y < Zabs x)) /\ (Zabs x = Zabs y).

After typing in the following:

intros;induction x;induction y.
contradiction.
contradiction.
contradiction.
contradiction.
unfold Zabs.
split.
induction p;induction p0.

I end up with 14 subgoals on positives. But I don't quite understand
the notation p~1, what is ~?

Is there a possible proof without having to induct on p and p0?


Thanks
Ashish

14 subgoals
  
  p : positive
  p0 : positive
  H : Zpos p~1 <> 0
  H0 : Zpos p0~1 <> 0
  H1 : Zpos p~1 + Zpos p0~1 = 0
  IHp : Zpos p <> 0 -> Zpos p + Zpos p0~1 = 0 -> ~ Zpos p < Zpos p0~1
  IHp0 : Zpos p0 <> 0 ->
         Zpos p~1 + Zpos p0 = 0 ->
         (Zpos p <> 0 -> Zpos p + Zpos p0 = 0 -> ~ Zpos p < Zpos p0) ->
         ~ Zpos p~1 < Zpos p0
  ============================
   ~ Zpos p~1 < Zpos p0~1

....





Archive powered by MhonArc 2.6.16.

Top of Page