coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Roman Beslik <beroal AT ukr.net>
- To: coq-club AT pauillac.inria.fr
- Subject: [Coq-Club] instantiating a module
- Date: Thu, 02 Apr 2009 18:35:31 +0300
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Hi all.
In Coq.Logic.Eqdep_dec there is a proof (packaged in 'Module') of Uniqueness of Identity Proofs for any type with decidable equality. So I've tried to obtain a specific proof for 'nat' since 'nat' has decidable equality:
Require Coq.Logic.Eqdep_dec.
Require Coq.Arith.Peano_dec.
Module eq_dec_nat : Coq.Logic.Eqdep_dec.DecidableType.
Definition U := Coq.Init.Datatypes.nat.
Definition eq_dec := Coq.Arith.Peano_dec.eq_nat_dec.
End eq_dec_nat.
Module eq_dec_nat_facts
:= Coq.Logic.Eqdep_dec.DecidableEqDep eq_dec_nat.
Check eq_dec_nat_facts.eq_rect_eq 0.
Error: The term "0" has type "nat" while it is expected to have type
"eq_dec_nat.U".
But 'eq_dec_nat.U = Coq.Init.Datatypes.nat' by definition of eq_dec_nat…
--
Best regards,
Roman Beslik.
- [Coq-Club] instantiating a module, Roman Beslik
- Re: [Coq-Club] instantiating a module, Stéphane Lescuyer
Archive powered by MhonArc 2.6.16.