Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Most straightforward inductive proof

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Most straightforward inductive proof


chronological Thread 
  • From: Razvan Voicu <razvan AT comp.nus.edu.sg>
  • To: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] Most straightforward inductive proof
  • Date: Sun, 10 May 2009 15:26:55 +0800
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Dear all,

Thank you all for your replies, and sorry for my getting back to you so late. The reason I asked how "straightforward" the proofs appear to you is because my proofs are by "implicit induction" (a more precise name would probably be 'proofs by descente infinie'). I find such proofs less dependent on the existence of an adequate induction principle, and thus easier to produce in general (and maybe automate). So I was trying to understand the level of familiarity of such proofs in the community.

All the three answers that I received were looking at the proofs from a 'formalizing mathematics' perspective. I wonder if any of you could comment from a 'proof automation' perspective.

Thanks again for taking the time to reply.

Razvan

Muad Dib wrote:
Hi Razvan, I would just like to point out:

Inductive multiple (d : nat) : nat -> Prop :=
| mO : multiple d 0
| mS n : multiple d n -> multiple d (d + n).

Definition even := multiple 2.
Definition m3 := multiple 3.
Definition m6 := multiple 6.

And that also forall d i, multiple d i <-> (exists k, i = k * d).

I would consider these proofs part of arithmetic (and prove them
arithmetically) rather than as inductive properties which happen to be
indexed by numbers, but then again your proofs are shorter so either
way is fine.





Archive powered by MhonArc 2.6.16.

Top of Page