Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Building sets modulo associativity, commutativity and idempotence

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Building sets modulo associativity, commutativity and idempotence


chronological Thread 
  • From: David Pereira <dpereira AT liacc.up.pt>
  • To: coq-club AT pauillac.inria.fr
  • Subject: Re: [Coq-Club] Building sets modulo associativity, commutativity and idempotence
  • Date: Tue, 28 Jul 2009 14:48:46 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

Thank you!

In fact my question was not so clear, and your suggestion makes full sense :)


Best regards,

David.


On 2009/07/28, at 09:53, Yves Bertot wrote:

David Pereira wrote:
Hi everyone.

I have a tactic for proving equality modulo ACI (associativity, commutativity and idempotence) for regular expressions. This tactic take the an equality x=y (where x and y are regular expressions) and provides a proof of their equivallence modulo ACI. This tactic is similar to the one described in section 16.3.3 of Coq'art book about proof by reflection.

Now, I would now to build a Coq function that uses this tactic for producing a set equivalent modulo ACI to the set given as argument to this function.


Do you have any suggestion, or know about any good document that I can give me some clear clues on how to do this?
Thanks a lot!

David.






--------------------------------------------------------
Bug reports: http://logical.saclay.inria.fr/coq-bugs
Archives: http://pauillac.inria.fr/pipermail/coq-club
        http://pauillac.inria.fr/bin/wilma/coq-club
Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
Your question is odd. The input to the function satisfies your verbal specification. It may be that you want a canonical representation... In this case, the equivalent to the function "flatten" from page 440 should do the trick.

Yves

Yves

David Pereira
MAP-i Phd Student in Computer Science
Researcher at LIACC - UP
Contacts : dpereira_at_liacc_dot_up_dot_pt
                   (+351)-220402900





Archive powered by MhonArc 2.6.16.

Top of Page