Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not sound? (was: Need help with coinductive proof)

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not sound? (was: Need help with coinductive proof)


chronological Thread 
  • From: Nils Anders Danielsson <nad AT Cs.Nott.AC.UK>
  • To: Coq Club <coq-club AT pauillac.inria.fr>, Agda List <agda AT lists.chalmers.se>
  • Subject: Re: [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not sound? (was: Need help with coinductive proof)
  • Date: Sun, 30 Aug 2009 01:20:21 +0100
  • List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>

On 2009-08-28 18:35, Edsko de Vries wrote:
would Agda accept it?

Yes, the following relation is trivial:

 data _∼_ : PCoℕ → PCoℕ → Set where
   zero   :                                 zero  ∼ zero
   suc    : ∀ {m n} (m∼n : ∞ (♭ m ∼ ♭ n)) → suc m ∼ suc n
   τ      : ∀ {m n} (m∼n : ∞ (♭ m ∼ ♭ n)) → τ   m ∼ τ   n
   τˡ     : ∀ {m n} (m∼n :    ♭ m ∼   n ) → τ   m ∼     n
   τʳ     : ∀ {m n} (m∼n :      m ∼ ♭ n ) →     m ∼ τ   n

   -- Transitivity.
   _∼⟨_⟩_ : ∀ n₁ {n₂ n₃}
            (n₁∼n₂ : n₁ ∼ n₂) (n₂∼n₃ : n₂ ∼ n₃) → n₁ ∼ n₃

   -- Reflexivity.
   _∎     : ∀ n → n ∼ n

 trivial : ∀ m n → m ∼ n
 trivial m n =
   m       ∼⟨ τʳ (m ∎) ⟩
   τ (♯ m) ∼⟨ τ (♯ trivial m n) ⟩
   τ (♯ n) ∼⟨ τˡ (n ∎) ⟩
   n       ∎

--
/NAD



This message has been checked for viruses but the contents of an attachment
may still contain software viruses, which could damage your computer system:
you are advised to perform your own checks. Email communications with the
University of Nottingham may be monitored as permitted by UK legislation.





Archive powered by MhonArc 2.6.16.

Top of Page