coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: muad <muad.dib.space AT gmail.com>
- To: coq-club AT pauillac.inria.fr
- Subject: Re: [Coq-Club] going from equality in Type to equality in Set
- Date: Tue, 29 Sep 2009 12:18:35 -0700 (PDT)
- List-archive: <http://pauillac.inria.fr/pipermail/coq-club/>
Avi Shinnar wrote:
>
> Hi all,
>
> Is it possible to prove the following lemma?
>
> Lemma type_set_eq (A B:Set) : @eq Type A B -> @eq Set A B.
>
> This came up because I have an inductive type
> Inductive Evals : forall {A:Type} ...
> and one of the constructors forces A to be a Set. So inversion on on
> Evals object yields a type equality in Type over objects in Set.
>
> Thanks,
>
> Avi
>
> --------------------------------------------------------
> Bug reports: http://logical.saclay.inria.fr/coq-bugs
> Archives: http://pauillac.inria.fr/pipermail/coq-club
> http://pauillac.inria.fr/bin/wilma/coq-club
> Info: http://pauillac.inria.fr/mailman/listinfo/coq-club
>
>
I don't believe it to be possible because Set is a subtype of Type. That is
Type is more general, the converse (eq in Set to eq in Type) is possible
though.
--
View this message in context:
http://www.nabble.com/going-from-equality-in-Type-to-equality-in-Set-tp25665030p25669211.html
Sent from the Coq mailing list archive at Nabble.com.
- [Coq-Club] going from equality in Type to equality in Set, Avi Shinnar
- Re: [Coq-Club] going from equality in Type to equality in Set, muad
Archive powered by MhonArc 2.6.16.