Skip to Content.
Sympa Menu

coq-club - [Coq-Club] how to make Coq to recognize that two inductive definitions are equal.

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] how to make Coq to recognize that two inductive definitions are equal.


chronological Thread 
  • From: Vladimir Voevodsky <vladimir AT ias.edu>
  • To: coq-club AT inria.fr
  • Cc: Vladimir Voevodsky <vladimir AT ias.edu>
  • Subject: [Coq-Club] how to make Coq to recognize that two inductive definitions are equal.
  • Date: Wed, 17 Feb 2010 10:04:15 -0700

Inductive total2 (T:Type) (P:T -> Type) := tpair: forall t:T, forall x: P t, 
total2 T P.

Inductive total2' (T:Type) (P:T -> Type) := tpair': forall t:T, forall x: P 
t, total2' T P.

Definition pr21 (T:Type) (P:T -> Type) (z: total2 T P) : T := 
match z with 
tpair t x => t
end.  

Lemma a (T:Type)(P:T->Type)(z: total2' T P) : pr21 T P z.


Coq does not understand the lemma saying that z has to be of type total2 T P. 
However, total2 T P and total2' T P are equal (up to alpha equivalence) as 
the terms of the calculus of construction and the membership in one is the 
same as in another. How can I point it out to Coq?

Thanks!
Vladimir.






Archive powered by MhonArc 2.6.16.

Top of Page