Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] finite sets in proofs

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] finite sets in proofs


chronological Thread 
  • From: Pierre Casteran <pierre.casteran AT labri.fr>
  • To: Christian Doczkal <doczkal AT ps.uni-sb.de>
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] finite sets in proofs
  • Date: Fri, 26 Mar 2010 13:11:17 +0100

Le 26/03/2010 12:56, Christian Doczkal a Ã©crit :
Hi

I have a proof development where I want to reason about finite sets over
decidable types. Im not interested in extracting code but I would like
to make as much use of definitional equality as possible to simplify
reasoning.

The Coq Standard Library offers several developments on finte sets

Coq.Sets.Finite_sets
Coq.FSets
Coq.ListSet

The last seems looks most promising for what I would like to do, except
that one always needs to explicitly provide the decision procedure for
the equality and there are not a whole lot of lemmas proven in this
library.

Which route would you recommend? Is there a more complete (proof
oriented) development on finite decidable sets that I am missing

Hello,

Did you look at the FSets library ? It contains a lot of already proven lemmas on finite sets.
This library uses the module system. Stéphane Lescuyer wrote a version bases on type classes, with most of the same functionalities.

Pierre







Archive powered by MhonArc 2.6.16.

Top of Page