coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: Pierre Corbineau <Pierre.Corbineau AT imag.fr>
- To: Jianzhou Zhao <jianzhou AT seas.upenn.edu>, coq-club AT inria.fr
- Subject: Re: [Coq-Club] let rec in
- Date: Tue, 06 Apr 2010 10:45:23 +0200
- Mailscanner-null-check: 1271148060.09705@ltxVmjmcfprl7Pz6yIsMzA
- Organization: Verimag
There is a way to do it also the syntax is a bit uglier :
Definition add (m:nat) (n:nat):nat :=
let add_n :=
fix add_ (m :nat ) :nat :=
match m with
O => n
| S m' => S (add_ m')
end
in
add_n m.
Jianzhou Zhao a écrit :
Hi,
'let-in' is for an inductive type with a single constructor.
It can also define a function:
Definition test : bool := let f := fun _ => true in f 0.
Can we define a recursive function in this way?
let rec ... in does not seem to be working.
I have been redefining those OCaml functions in Coq,
to verify these OCaml programs in Coq. Hopefully,
the Coq extraction can output similar OCaml code
from these Coq definitions.
But the local recursion cannot be defined.
It is also fine to define this recursion on the
top level, but it must take additional arguments
to store the closure. I was wondering if the extraction
can inline these top-level recursion.
Does anyone know any better idea for this problem?
--
Pierre Corbineau |
Pierre.Corbineau AT imag.fr
VERIMAG - Centre Équation | Tel: (+33 / 0) 4 56 52 04 42
2, avenue de Vignate | Office nr B7
38610 GIÈRES - FRANCE | http://www-verimag.imag.fr/~corbinea/
begin:vcard fn:Pierre Corbineau n:Corbineau;Pierre org;quoted-printable:Universit=C3=A9 Joseph Fourier - Grenoble 1;Laboratoire VERIMAG - Polytech' Grenoble adr;quoted-printable;quoted-printable:2, avenue de Vignate;;VERIMAG - Centre =C3=89QUATION ;GI=C3=88RES ;;38610;France email;internet:Pierre.Corbineau AT imag.fr title;quoted-printable:Ma=C3=AEtre de Conf=C3=A9rences tel;work:+33 (0) 4 56 52 04 42 tel;fax:+33 (0) 4 56 52 03 44 x-mozilla-html:FALSE url:http://www-verimag.imag.fr/~corbinea version:2.1 end:vcard
Attachment:
smime.p7s
Description: S/MIME Cryptographic Signature
- [Coq-Club] let rec in, Jianzhou Zhao
- Re: [Coq-Club] let rec in, Pierre Corbineau
- Re: [Coq-Club] let rec in, Bruno Barras
- Re: [Coq-Club] let rec in, Pierre Corbineau
Archive powered by MhonArc 2.6.16.