Skip to Content.
Sympa Menu

coq-club - [Coq-Club] Section 5.3.4 in coq'art

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

[Coq-Club] Section 5.3.4 in coq'art


chronological Thread 
  • From: "�����" <qgxu AT mail.shu.edu.cn>
  • To: "coq-club" <coq-club AT inria.fr>
  • Subject: [Coq-Club] Section 5.3.4 in coq'art
  • Date: Fri, 3 Sep 2010 19:45:41 +0800

Hello coq-club:
  Now, I am reading the book "Interactive theorem proving and program development: Coq'Art : ...".
 I have some question about the proving "le_lt_S_eq"  in section 5.3.4.
 
Lemma cond_rewrite_example : forall n:nat,   8 < n+6 ->  3+n < 6 -> n*n = n+n.
 
    From the above,  n  is a natural number that is both greater than 2  and little than 3, i.e., 2<3<n.
But such a natural number does not exist.
 
why the  following srcipts  can succeed.
 
Proof.
 intros n  H H0.
 rewrite <- (le_lt_S_eq 2 n).
 simpl; auto.
 apply  plus_le_reg_l with (p := 6). 
 rewrite plus_comm in H. simpl. auto with arith.
 apply   plus_lt_reg_l with (p:= 3); auto with arith.
Qed.
 
That is to say, the theorem "plus_le_reg_l" can apllied be simplified the "<=" to "<"
 
Is there some problem?
 
thank you
 
2010-09-03

 Best Kinds!
  Q.g. XU
 



Archive powered by MhonArc 2.6.16.

Top of Page