coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: ruy.leywild AT imdea.org
- To: coq-club AT inria.fr
- Subject: [Coq-Club] equality of dependent pairs
- Date: Thu, 3 Feb 2011 10:02:34 +0100 (CET)
- Importance: Normal
Hi all, in the following example I want to prove injectivity of a
dependent pair. Below, inj has an explicit type parameter whereas inj'
assumes the variables have type unit. In v8.2pl1 both proofs work; but in
higher versions (v8.2pl2, v8.3, and v8.3pl1) the first works but the
latter fails(!). My current workaround is to use inj to prove inj', but
I'd rather prove it directly if possible. Any suggestions?
Thanks, Ruy.
Require Import Eqdep.
Set Implicit Arguments.
Record dynamic : Type := dyn {typ : Type; val : typ}.
Lemma inj A (x y : A) : dyn x = dyn y -> x = y.
Proof. intros A x y H; injection H; apply inj_pairT2. Qed.
Lemma inj' (x y : unit) : dyn x = dyn y -> x = y.
Proof. intros x y H; injection H; apply inj_pairT2. Qed.
> intros x y H; injection H; apply inj_pairT2.
> ^^^^^^^^^^^
Error: Failed to decompose the equality.
- [Coq-Club] equality of dependent pairs, ruy . leywild
- Re: [Coq-Club] equality of dependent pairs, AUGER Cedric
- <Possible follow-ups>
- Re: [Coq-Club] equality of dependent pairs, Paolo Herms
Archive powered by MhonArc 2.6.16.