Skip to Content.
Sympa Menu

coq-club - Re: [Coq-Club] Trivial? proof on a simple inductive type

coq-club AT inria.fr

Subject: The Coq mailing list

List archive

Re: [Coq-Club] Trivial? proof on a simple inductive type


chronological Thread 
  • From: Adam Chlipala <adam AT chlipala.net>
  • To: franck.barbier AT franckbarbier.com
  • Cc: coq-club AT inria.fr
  • Subject: Re: [Coq-Club] Trivial? proof on a simple inductive type
  • Date: Wed, 09 Mar 2011 19:45:45 -0500

franck.barbier AT franckbarbier.com
 wrote:
I become quite mad on the second proof... I guess there are two solutions. The
proof is "too much trivial" or artificially complicated, even not proovable ?

Inductive X : Type := God | cons : X ->  X.

This type is isomorphic to the natural numbers [nat], and your theorem is pretty easy to reduce to a set of facts about arithmetic, all of which can be proven by the [omega] tactic. My hint is to write a function to translate [X] to [nat] and then characterize the action of your [ancestor] function in terms of standard arithmetic operations.



Archive powered by MhonArc 2.6.16.

Top of Page