coq-club AT inria.fr
Subject: The Coq mailing list
List archive
- From: "Ly Kim Quyen (Gwenhael)" <lykimq AT gmail.com>
- To: coq-club AT inria.fr
- Subject: [Coq-Club] Context
- Date: Tue, 26 Jul 2011 11:23:39 +0800
Dear list,
Here is the order of my section.
Section S.
Variable nat_of_string : string -> nat.
Section color.
....
Notation aterm := (ATerm.term Sig).
Notation arule := (ATrs.rule Sig).
Notation arules := (ATrs.rules Sig).
Notation abrule := (ATrs.brule).
...
Section order.
....
Definition bsucc_ge := brel succ_ge_dec.
Lemma bsucc_ge_sub : rel bsucc_ge << succ_ge.
....
End order.
Definition redPair_interpretation ...
Lemma redPair_interpretation_ok ...
End color.
...
End S.
Here is my problem.
When I am proving the Lemma redPair_interpretation_ok, at this goal, it gives me the different context:
nat_of_string : string -> nat
arity : symbol -> nat
R : arules
d : domain
d0 : degree
is : list interpret
R' : arules
bsucc_ge : aterm -> aterm -> bool
bsucc_gt : aterm -> aterm -> bool
H : forallb (abrule bsucc_ge) R = true
H0 : Ok (filter (abrule (neg bsucc_gt)) R) = Ok R'
H1 : WF (red R')
Rge := filter (abrule (neg bsucc_gt)) R : list arule
Rgt := removes eq_rule_dec Rge R : list arule
l : aterm
r : aterm
h : In {| lhs := l; rhs := r |} R
============================
rp_succ_eq rp l r
When I apply the lemma: apply bsucc_ge_sub. The goal is: rel color.bsucc_ge l r , where rp_succ_eq (Constant CoLoR.Term.WithArity.ARelation.rp_succ_eq)
I go further and I meet the hypothesis H with bsucc_ge. I cannot use the tactic: apply H. to be able to using the hypothesis h to finish my goal.
nat_of_string : string -> nat
arity : symbol -> nat
R : arules
d : domain
d0 : degree
is : list interpret
R' : arules
bsucc_ge : aterm -> aterm -> bool
bsucc_gt : aterm -> aterm -> bool
H : forall x : arule, In x R -> abrule bsucc_ge x = true
H0 : Ok (filter (abrule (neg bsucc_gt)) R) = Ok R'
H1 : WF (red R')
Rge := filter (abrule (neg bsucc_gt)) R : list arule
Rgt := removes eq_rule_dec Rge R : list arule
l : aterm
r : aterm
h : In {| lhs := l; rhs := r |} R
============================
abrule color.bsucc_ge {| lhs := l; rhs := r |} = true
How I can use the hypothesis H?
I am sorry if my code given is not enough information.
Thank you very much,
Gwen
- [Coq-Club] Context, Ly Kim Quyen (Gwenhael)
Archive powered by MhonArc 2.6.16.